ON THE STUDY OF TORUS EQUIVARIANT CR SECTIONS

SHEN, WEI-CHUAN

ABSTRACT. In this thesis, we study the growth of dimension for the space of torus equivariant CR
sections, and get a torus equivariant Siu—Demailly-Grauert-Riemenschneider type criterion on cer-
tain CR manifolds. As a corollary, we obtain a criterion that when a holomorphic line bundle is torus
equivariantly big.
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Finding holomorphic object has always been a main theme in the complex geometry. Let M

be a compact complex manifold, since all holomorphic functions on M are constant functions by

Liouville’s theorem, people study holomorphic sections of a holomorphic line bundle L over M

instead, and the behavior of the growth of the dimension for the space of holomorphic sections
HO(M, LK) := {u € €°(M,L¥) : du = 0} when k — oo turns out to be a core issue. The first
concerning result shall be Siegel’s lemma (c.f. Ma—Marinescu [10, Lemma 2.2.6]), which states that

without any positivity assumption for L, there is

(1.1)

dime HO(M, L¥) < k" for all k > 1.
1
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In 1950’s, Kodaira found that if L is positive, then L is big, namely
(1.2) dime H'(M, LX) = O(k"),

where n := dim¢ M. This result can be derived by the combination of vanishing property with
the index theorem. On one hand, by the Kodaira-Serre vanishing theorem (c.f. Ma-Marinescu [10,
Theorem 1.5.6]), if L is positive, then the higher Dolbeault cohomology of (¢ (M, T***M ® L), d)
vanishes, namely

(1.3) HY(M,LF) = 0forallg > 1, k> 1.

On the other hand, the Riemann—-Roch-Hirzebruch theorem suggests that

n . n

14) Y (-1)7dimec HY(M,L¥) = / Td(TYM)ch(LF) = 7' / <1RL> +o(K") = O(k").
=0 M n! Jm \ 2

when L is positive. From (1.3) and (1.4), we get Kodaira’s (1.2), and this is important because

people can hence produce many holomorphic sections, and it is exactly the first step toward the

celebrated Kodaira’s embedding theorem, which states that a holomorphic line bundle L over a

compact complex manifold is positive if and only if L is ample.

In 1970’s, Grauert and Riemenschneider tried to generalize the result from Kodaira. Roughly
speaking, they quested when a compact complex manifold M is bimeromorphic to a projective
one, that is M is Moishezon. It's a known characterization that a manifold M is Moishezon if and
only if it carries a big line bundle L, in other words, (1.2) holds (Ma—Marinescu [10], Theorem
2.2.15). In 1983 and 1984, Siu [11] and Demailly [6] find different criteria for the bigness of a semi—
positive line bundle, respectively; namely, let M be a compact connected complex manifold of
complex dimension 7, and (L, hL) be a Hermitian line bundle over M, then M is Moishezon if one
of the following conditions is verified:

(S) (Siu’s condition)

iR! is semi-positive and positive at a point over M,

()
[ (B s
M(<1) \ 27

Here R’ is the canonical curvature induced by h' and M(< q) := U;.Ile( j), where

(D) (Demailly’s condition)

M(q) := {x € X : iRL is non-degenerate with exactly g negative eigenvalues}.

(Note that (S)=-(D), since in this case M(1) = @, M(0) # @, iRt > 0 and iR* > 0 on a ball).
The condition (D) is a direct corollary of the influential holomorphic Morse inequality, which was
tirst appeared in Demailly [6]. Demailly was inspired by Wittens analytic proof of classical Morse
inequality; the role of Morse function is played by the Hermitian metric of L, and the Hessian of
the Morse function is replaced by curvature R% instead. With the study of spectral behavior of the
Kodaira Laplacians [J; on L¥ for k large by the method of semi-classical and heat kernel, Demailly
successfully established

q , . k" iRE\"
—i 1. k n
(1.5) jzo(—l)q Jdim¢ H/ (M, L") < ) / (Sq)(_l)q <2 > +o(k").
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Combine the case g = 1 in (1.5) and the Siegel’s lemma (1.1), we can find that L is big when the
condition (D) holds . We pause here a while to explain (1.5) more, which leads to the generalization
of (1.3) and (1.4). In fact, by some linear algebraic argument, when g = n, (1.5) gives the asymptotic
Riemann—Roch theorem

n - ) n iRL n ;
%(—1)] dime H/ (M, LF) = m/M(gn)(_l)q (2”) +o(K").

Also, forall j =0, -- ,n, we can deduce that

) n .RL n
. i j ky « 7/ I n
(1.6) dim¢ H/ (M, L") < Al o) (27r) +o(k"),

which gives the asymptotic vanishing property
dime H/ (M, LX) = o(k™) for all j > 1, k large

when the condition (S) holds.

In some recent progress, the growth order of the equivariant holomorphic sections of equivari-
ant line bundles plays an important role in geometric quantization as well as equivariant complex
algebraic geometry. The classical method of Siu [11] and Demailly [6] can not be applied directly
to the equivariant setting. In this thesis, for the torus equivariant case, we can reduce the problem
to certain CR manifold with an extra torus action. Let M be a compact Hermitian manifold of
complex dimension # endowed with a holomorphic torus action T%, (L, k%) be a holomorphic line
bundle over M with a smooth T%-invariant Hermitian metric, and T; be the fundamental vector
fields induced by T% in j-th direction. For (py,- -+ ,p4) € Z%, let

H) 5 (ML) = {u € ¢°(M,L") : 9u = 0, —iTju = pjuforallj =1,--- ,d}

be the space of T%-equivariant holomorphic sections. We want to ask what (py,---,ps) € Z¢
makes

dime Hp, . 4, (M, L¥) = O(K").

This is not so clear even when some positivity conditions for the torus invariant curvature on
L holds. The obstruction mainly comes from the torus action may even not be locally free. To
overcome this issue, triggered by Hendrick-Hsiao-Li [8], we consider the circle bundle

X:={vel:|ov|;. =1}

which is a also CR manifold of real dimension 21 + 1 with a naturally fiberwise circle action. Since
this action is CR, transversal, we can take a natural CR, transversal T?"! = T¢ x S! action on X.
By the isomorphism

0 ky ~ 170
le/"'/pd(M’L ) = Hb/pl/"

kX)) ={u €€ (X) 1 opu=0;Vj=1,---,d, —iTju = pju}

where 0, is the tangential Cauchy-Riemann operator with respect to the natural Reeb’s vector field
induced by CR, transversal T¢*! action, we then turn the problem to the study of torus equivariant
CR sections. The main point is that the induce R-action by T%*! is locally free, and it is the semi-

classical limit for S'-action. So we can approximate our object with the known case of circle actions.



4 SHEN, WEI-CHUAN

Following the framework in Hendrick-Hsiao-Li [8], we consider a real 21 + 1 dimensional com-
pact CR manifold X with a CR transversal torus action T%. Namely, for each fundamental vector
field Tj,

[T, C(X, TVX)| € C¥(X, TX)

and there exists (y1,- - ,1y) € R?\ (0, --0) such that
d
TXPTIXEPC(Y 1T (x) = CT X forall x € X
=1

where T}YX is the abstract CR structure of X. In this case,
Tjéb = ébT] for all] =1,--- ,d.

So for all (p1, - ,p4) € Z%, we can consider the 9, subcomplex <Q§,?’:.). /Pd(X)’éb/plx'“/pd)’ where
the g-th Fourier component is given by

Q) L(X) = {u € QO (X): —iTju = pju forall j=1,--- ,d}

and the g-th cohomology group Hg,m,--- pa(X)-

Leta := Z?:l uipj, To := Zle #;T;, and (-|-) be the Ty-rigid L? inner product on Q%9 (X) such
that (—iTyu|v) = (u| — iTyv) for all u,v € Q09 (X). Let L%O q)(X) be the completion of Q07 (X)
with respect to (+|-). We may assume {y j}}?l:l is linearly independent over Q, and consequently for

the self-adjoint operator —iTy, Spec (—iTy) C R only consists of eigenvalues; in fact,

d
B € Spec (—iTy) <= B=Y_u,p;forsome (p1, -, pa) € Z*
j=1

and

L%O,ﬁ),Pv-de(X) ={ue L%o,q)(X) : —iTou = au}.

We also have

HZ,pl,m,pd(X) = ker Dz(fi = {u € ker Dl(ﬂ) : —iTou = au} is a finite dimensional subspace of Q%9 (X)

where Dl()q) := 0;0} + 0,0} is the Kohn Laplacian determined by Ty. Although D,(jq) may not be
elliptic or hypoelliptic, the Dl(j) — T2 is a second order self-adjoint elliptic differential operator.
The main idea, which was suggested to me by Professor Chin-Yu Hsiao, is to approximate the
R-action induced from Ty by a suitable S'-action, which we now explain. For (py,---,ps) € Z*
and « := Z?:l 1jp; € Spec (—iTy), we choose a sequence of rational numbers {1 ;}>; converging

to y; for each j. Then Ty = Z;Ll pr,Tj — To and ay := Z}Ll Mr,jpj — a ask — oo. Put

= {u e QON(X) : O u = 0, —iTju = wgu}.

A priori we have ker Dl(fpz - ,)i/bf]ak. In this thesis, we proved that there exists lattice points (p1, - - - , pa)

such that ker Dl(ﬂ = ‘%/quxk' Furthermore, using the results in [4, 9], we obtain:
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Theorem 1.1 (=Theorem 4.3). Let X be a compact CR manifold endowed with a transversal, CR torus
action on X. Assume X is torus invariantly pseudoconvex and torus invariantly strongly pseudoconvex at

a point. For a fixed (p1,- -+, pa) € Z* such that HS/PI/"'/Pd(X) # {0}, assume

Ajpj >O0forallj=1,---,d
and suppose that there exists a constant C > 0 such that
inf{|m20c2 — B?| : B € Spec (—iTy), B # ma, keng # {0}, m € IN} =C>0
(where o := 2;1:1 Aipj, {/\j}?zl are the transversal data linearly independent over Q), then

dime Hy -y, (X) = dim Hp,o (X) = O(m").

~Mpg4

Corollary 1.1 (=Corollary 4.1). Let M be a compact complex manifold of dimec M = n with a holomorphic
torus action T, and (L, h") be a holomorphic line bundle over M with a torus invariant smooth hermit-
ian metric. Take any real numbers { ‘u]-}}i:l linearly independent over Q. If the canonical curvature R*
induced by h satisfies Rt > 0 and RL > 0 for some z € M, and suppose that for the given lattice point
(p1,- -+, pa) € Z7 satisfies

Hipj > Oforallj=1,---,d,

and a spectral gap such that for all m € IN, and all (p1,- - -, Pa+1) # (mp1,-- -, mpg, m) with

ker O  # {0}

Pd+1

@e Pa+1
3y (M,L

there is

d d+1 2
inf |m? ((Z }ljpj)z + 1) — (Z ﬂjﬁj) > 0.
=1 =1

]:

Then for such (p1,- -+, pa) € Z%, L is torus equivariantly big, that is

dime Hy,p, ., (M, L") = O(m").

©/Mp4
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2. PRELIMINARIES

We begin from some basic CR geometry, and recall the results for S'-action already known in
Hsiao-Li [9] and Cheng-Hsiao-Tsai [4].



6 SHEN, WEI-CHUAN

2.1. Basic CR geometry. Let X be a smooth manifold of dimgr X = 2n+1, n > 1, wesay X is a
CR manifold if there is a CR structure, denoted by T19X  such that
(1) T'X is a subbundle of CTX with dim¢ T;’OX =nforanyp € X.
) T,°XNTy'X = {0} forany p € X, where Ty"' X := T,,TX.
(3) For V1, Vo € €*(X,T'’X), then [V, V5] € €%(X,T'°X), where [-,-] stands for the Lie
bracket.

Note that we can always take a non-vanishing global vector field T such that
TX & T"'X & CT = CTX.

Denote (-, -) the paring by duality, and let wy be the globally defined non-vanishing 1-form satis-

fying
(wo, TX @ T*'X) = 0 and (wo, T) = —1.

Then the Levi form is defined by

£a(i,5) = 5 (wo(), 8,5 (),

where 77 and 7 € ¥ (X, T'?X), and by Cartan’s formula we can also express it as

ie.

10
Given a Hermitian metric (-|-) on CTX, it induces a I—TIer}frnitian metric on CT*X, and hence on
AN'CT*X by
(ug A= ANuplog A---0,) = det (<uj]uk>]r.lk:1> :
Define T*10X := (T CT)L C CT*X, and T**'X := T*L0X. Let the orthogonal projection
70 . AICT*X — T*0 X .= AY(T*01X)
with respect to this Hermitian metric, then the tangential Cauchy—Riemann operator is defined by
3 =m0 od: ¢°(X, T%X) — ¢ (X, T"*91X).
By Cartan’s formula, we can check that
97 = 0.

Also, consider the formal adjoint d; with respect to the L? inner product

(Flg) = [ (flg)dVa,

dVX(X) = \/det <£c|;)xk>dxl VANRRIRIVAN den-l-l'
]

where locally

Denote 009 (X) := € (X, T**1X), then the Kohn Laplacian is then defined by
O = 8;3, + 39, : Q0 (X) = Q09 (X).
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Different frm the Kodaira Laplacian 9*0 + 09* in the case of complex geometry, the Dl(ﬁ) is not ellip-

tic; locally, if we denote e (x), - - -, e,(x) to be an orthonormal frame of T:%YXand Ly, -, Ly(x)

be the dual frame of T,(C)’1 X, then we have

n n
Dl(;l) — Z% LiL; + kZ; (ej A e,f’*)[Lj, L{] + lower odeder terms
j= jk=1

and
n

T (%, 8) = Y lor, (x 8)

j=1
In particular, there is Tq@) (x,wp) = 0. Moreover, it may even not be hypoelliptic unless the so
b
called Y(g) condition holds (cf. Chen-Shaw [3]).

2.2. The S'-equivariant weak CR Morse inequality. Let X be a compact connected CR manifold
endowed with a CR, transversal S!'-action, i.e. the Reeb vector field T induced by S'-action satisfy

1) [T, ¢°(X, T'X)] C €°(X, T*’X), and
Q) T(x)® TH°’X @ T¥'X = CT,X forall x € X

respectively. Here, T is given by

Tu(x) := ;9 ; Ou(eie ox)forallu € €*(X), x € X.

Such global vector field T matters because it commutes with the operator 9y, i.e.
Top = 0,T.
So we can we can consider
QY (X) == {u € QD (X) : Tu = imu}
and the g-th Kohn—-Rossi cohomology

ker (ah,m 09 (x) QE,?'“”(X))
H) X =

Im (3, OV (X) = QR7 (X))
on the d;, subcomplex
Bt - = OV (x) = AP (x) - QMY (x) — -

Choose a T-rigid Hermitian metric (-|-) on CTX, and construct the L? inner product (-|-) ac-

cordingly, then we also have To; = 0;T with respect to (-|-). Hence d;| 0y, = 9;,. Put

DZ(JZL = Dl(,q) 009 (x) accordingly, and by taking L%Olq)(X) to be the completion of Q%% (X) with

respect to the T-rigid L? inner product (+|-) induced by (-|-), in fact there is the Hodge theorem

HZm(X) = Hzm(X) := {u € Dom D}(f’) : Dl(ﬂ)u = 0and Tu = imu}.
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To study the asymptotic bounds for the dimension of st equivariant CR sections, one way is to
introduce the Szegd kernel

Ay

o
I (x) := 21 ()= ) (f(0)f(x)
i

j=1

where {f;}7"; is an orthonormal basis for the finite dimensional space H] (X). The above defini-
tion is in fact independent of the choice of basis; furthermore,

/X I (x)dVx(x) = dime H]  (X) = dime H], (X).
For every k € IN, take
Xp={xeX:V0e [O,%),emox #xandeF ox = x}
and we define the regular set by
Xeg :={x € X: V0 € [0,277), e 0 x # x} := X;.

From now on, we all assume Xreg # @. In fact, we can also check that Xreg 18 an open dense subset
of X, and X \ Xeg has measure zero. Also, we collect the information about the positivity of Levi
form by

X(q) := {x € X : the Levi form L, is non-degenerate and has exactly g negative eigenvalues}.

We are now ready to state one of the main results established by Hsiao-Li in [9]. After careful
calculation of the relation of Kodaira Laplcain and Kohn—-Rossi Laplacian, semiclassical approxi-
mation of Kodaira Laplcain and the Bergman kernel on C”, the local asymptotic behavior of Szeg6
kernel can be summarized as:

Theorem 2.1 (Local S'-equivaraint weak CR Morse inequality). Assume the same X, then

(1) Vx € X, sup{m‘”H,(,?)(x) :meN, x € X} < co.
(2) Vk e N, x € Xy # @D, then¥q =0,1,--- ,n

n

lim sup m "1 (x) <

PES ‘ det Lx\lx(q)(x).
m—>00
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By compactness of X, we can integrate the Szegd kernel and have

limsup m ™" dim¢ HZ/m(X) = limsupm™" dim¢ Hz,m(x)

m—oo m—oo
= lim sup m_”H,(ﬁ)(x)dVX(x)
m—oo X

= lim sup m_”H,(ﬂ)(x)dVX(x)

m—o0 Xreg
< / lim sup m_”H,(ﬁ)(x)dVX(x)
Xreg m—»00

(Fatou’s lemma is guaranteed by the first part of Theorem 2.1)

1

< W /Xreg ‘ detﬁx‘lx(q) (X)dVX(X)

(take k = 1 in the second part of Theorem 2.1)
1

— = | detLalavi(x),

which implies:

Theorem 2.2 (S'-equivaraint weak CR Morse inequality). Assume the same X, then as m — oo

dim¢ H? (X) < —

X) < 5 /X(q)]det/lx]lx(q)dVX(x)+o(m”).

Given a holomorphic line bundle with a smooth hermitian metric over a compact Hermitian
manifold, the circle bundle plays the role revealing the information for the positivity of the line
bundle, so we can apply the result on CR manifold presented earlier to rebuild the well-known
theorem:

Corollary 2.1 (Demailly’s weak holomorphic Morse inequality). Let M be a compact Hermitian man-
ifold with dime¢ M = n, (L, hL) be a holomorphic line bundle over M with a smooth hermitian metric. Then
Vg=0,---,n,ask — oo,

kl’l
(27)"

ere, tne curovarure 1s ine ern curoature of L, wnicn 1s a giloval postitoe rea ’ orm (Locally,
Here, th ture RE is the Ch t L, which is a global positi I (1,1 (Locally

RE := 200¢, if we denote the local trivializing section by s : u — L and |s(z)|?, = e 29©)). Also,
M(q) := {x € M : RL is non-degenerate and has exactly q eigenvalues}.

dime H(M, LX) < / |4t REIV(z) + (k")
M(q

Proof. Take the circle bundle X := {v € L* : |v
with a fiber-wise transversal, CR S!'-action. Moreover, by direct computation, locally there is

2. = 1}, which is in fact a CR manifold endowed

Ly = %R;forallx € X, ze M.
With the known fact (for example, see Theorem 1.4 in Cheng-Hsiao-Tsai [4])

dime H(M, L¥) = dim¢ H] . (X).
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Then Theorem 2.2 gives

dime H(M, L*) = dim¢ H} ,(X)
kn
< - n
<o /X 19t LaldV(x) + (k)
k" 2
— 27-(n+1 27
ki’l

~ o /M(q) | det Rz |[dVi(z) + o(K").

/ | det R.|dVi(z) + o(K")
M(q)

(]

2.3. The S'-equivariant Riemann-Roch-Hirzebruch theorem. We start from some notations and
facts about the rigid Hermitian CR geometry.
One one hand, foreachj =1,- - ,2n, take Q) (X) := {u € @Hq:jﬂ(p'q)(X) : Tu = 0}, and let

2n

05(X) == R Q)(X).
j=0

Since dT = Td, we can again consider the d-subcomplex

doe = O(X) = O (X) =

and the corresponding equivariant cohomology H{;,O(X ).

On the other hand, we say a function u is T-rigid if Tu = 0, and a vector bundle F of rank r over
X is said to be T-rigid, if X can be covered by some open sets {Uj}]r-zl such that the trivializing
frames { f;x };_, has T-rigid transition functions. Let (-|-) r be a Hermitian metric on F, then we say
it is T-rigid if for every local frame {f;}7_,, there is T(fj|f¢)r forall jk =1,--- ,r.

Now, fix a T-rigid vector bundle F endowed with a T-rigid fiber metric. It is known that (cf.
Cheng-Hsiao-Tsai [4]) there exists a T-rigid connection VF on F such that for any rigid local frame
{fj}i_1 over a open set D C X, the connection 1-forms (6;x);,_; given by VEfi = fibjx satisfy
Ojk=1 € Q}(D) for all j, k. Accordingly, we take the T-rigid curvature 2-form

Q(VH,F):=do—0n0

and for any real power series (z) := Z}’il ajzj, z € C, set

H(O(VE,F)) :=Tr (h <@(2V7:F))> € Q5(X).

Then we can check that (cf. Ma—Marinescu [10] and Cheng-Hsiao—Tsai [4])

(1) H(O(V,F)) is a closed form.
(2) For two rigid connection V and V' on F, then

H(®(V,F)) - H(O(V',F)) = dA

for some A € ()5 X.
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Put h(z) := log(1=%=), and take
Tdy(VF, F) := OVF),
Then the tangential Todd class of F is defined by

2n .
Td, (F) := [Tdb(vF,P)} € Hy(X) := @ Hj,(X
=0

Note that TP X is a rigid vector bundle over X (cf. Cheng-Hsiao-Tsai [4]).
In Cheng-Hsiao-Tsai [4], they established S!'-equivariant Riemann—-Roch-Hirzebruch theorem:

Theorem 2.3. Assume the same X, then

n . ; 1 mdwg
; j _ 1,0 —
]g(—w dime HJ ,,(X) = 5 /XTdb(T X) A e~ A wp.
Corollary 2.2 (Riemann-Roch-Hirzebruch theorem). Let M be a compact Hermitian manifold with
dime M = n, (L, h*) be a holomorphic line bundle over M with a smooth hermitian metric. Then for all
k€N,
n . .
Y (~1)/ dime H/(M, L¥) = / Td(T'OM) A ch(LF).
=1 M

Proof. As before, take X := {v € L* : |v]2. = 1}, and then

n n
Z(— ]dlmC H] M L Z ]dlmc bk<X)
j=1 j=1

- 7/ Tdy(TWX) Ae™ 2 Aw
_27_[ X b 0

- / Td(T'OM) A ch(LF).
M

3. THE PROOF OF THE Sl-EQUIVARIANT WEAK CR MORSE INEQUALITY
In this section, we give a complete survey on Hsiao-Li [9]. Some idea and result involved here

will be in the used later section.

3.1. The BRT trivialization. Let X be a compact connected CR manifold endowed with a CR,
transversal S!'-action, then as in Baouendi-Rothschild-Tréves [1], after applying Newlander-Nirenberg’s
theorem by the integrability assumption and the CR, transversal conditions for the S!-action, we
can see that locally X is a Heisenberg group. We summarize this fact along with some related

results in Hsiao-Li [9] as follows:

Theorem 3.1. Assume the same X, then

(1) Forall xg € X, there exists €,6 > 0, canonical coordinate patch near x
D:={(z0):|z| <e 0] <}
and a local coordinate

(x11x2/ ot Xon—1,X2n, x2n+1) = (le e IZYIIG)/



12 SHEN, WEI-CHUAN

where zj := xpj_1 +iXj, 0 1= X241, such that
(a) the fundamental vector field induced by S'-action is in the form

d
T = 30"
(b) We can find a ¢(z) € € (D, R) such that

IR GEAL
{Zf o o ae}

=1

forms a basis of Ty X for all x € D.
(c) Follow the notations above, we can take the pair (z,0, ¢) such that

(2ta).600) ) = 00
and

P(z) = i/\j]szZ —I—O(|z[3)for all (z,0) € D,
=1

where {/\j};?zl are eigenvalues of the Levi form of X at xo with respect to the chosen T-rigid

metric.
We call such pair (z,0, ¢) is trivial at x.
regs ] ] sV ]
(2) Let xo € Xreg, then there exists an €9 > 0 and a pair (z,0, ¢) in

D:={(z,0):|z| <ey |0 <}

trivial at xg.
(3) Let xo € Xy, k > 1, then for all € > 0, there exists an €y > 0 and a pair (2,0, $) in

7T
De := {(z,e) |2l < eo/10] < —e}

trivial at xg.
Corollary 3.1. Let T be the fundamental vector filed induced by the S'-action, then Td, = 9, T

Proof. Locally, in the coordinate patch, for u € Q09 (X),

Y
- 06

__— p(Ouy , 0p(z)oup\
oyt = UZ—:q <azj—i-z 5z, 90 dz; \dz!.

Tu

and

Since the term concerning ¢ is independent of 6, it’s clear that T commutes with 9.

(]

To give the Fourier decomposition of the smooth (0, g) form via —iT, we need some knowledge

about the rigid geometry: A vector field V on D is said to be T-rigid if
(de®) V(x) = V(e o x).

In fact, there exists a so called T-rigid metric (-|-) on CTX satisfying
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(1) For T-rigid vector field V, W on D,

(VIW() = ((d)<V (2)) | (de)W(x)) = (V(e® 0 x)|W(e o) ).
2) TWX L T%'X and T L (T0X @ TO'X).
(3) If V, W are real vector filed, then (V|W) € R.
For such T-rigid metric, and any xy € X, take the canonical coordinate patch

D:= D x (=6,6)

near xg such that the pair (z, 6, ¢) trivial at xo. We identify the patch as an open subset of C" x R,
then there exists an orthonormal frame {e]} '_, of T*%1D with respect to the fixed T-rigid Hermitian
metric so that

1) ¢(x) = ¢(z) = dz; + O(z]).
(2) The volume form of X respect to the fixed T-rigid Hermitian metric on CTX is of the form

AVx(x) = A(z)dv(z)do,
where A(z) € (D, R) is independent of 8 and dv(z) = 2"dx; - - - dxa,.
With this facts, we can now present the S!-Fourier decomposition.
Proposition 3.1. We can decompose the space orthogonally:

(1) QO (X) = Bz QX .
(2) L%O,q)(X) = @’”GZL%O,q),m (X)

Proof. (1) For u € Q09 (X), 0 € (—m, ), we have [T u(e® ox)e=™midy = O(#) by applying
integration by parts twice. So as in the case of S! Fourier series,

=) 27r/ u(e' o x)e™™9d0 in C* topology.

meZ

On one hand, let
(Qm = / (e o x)e™ ™40,
then there is
(QFu)( 0x) = ™ (Qu) ().
forall ¢ € [0,27), i.e. Q,(ﬁ)u € Q,(,?’q)(X).

On the other hand, for u € Q and v € Q7 X, where m # n. Then because (-|-) is
T-rigid, locally there is

(—iTulv) = / (—1aaeu) 02"A(xq, -+, Xop)dxy - - - dxp,d0
—/ (—102”/\(3(1, . ,xzn)> dxqy -+ dxr,do

= / —1—02" A(xy,+ -+, Xop)dxq - - - dxp,d6
= (u] — va)
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In other words, we have
m(u|v) = (—iTu|v) = (u| —iTv) = n(u|v),

i.e. (u|v) = 0. In conclusion, Qg,?) tu € QUD(X) = 5L [T u(e® o x)e™0do € QS,?"”(X)

7T
is an orthogonal projection, and the Fourier decomposition is orthogonal with respect to T-

rigid (+|-) .
(2) Just take the completion of QY X with respect to T- rigid (-|-) .
O

3.2. The Hodge theorem for Kohn-Rossi Laplacian. In this section, we follow the argument ap-
peared in Cheng-Hsiao—Tsai [4] to gain the Hodge theorem for Kohn—Rossi Laplacian. It’s well
known that Dlgq) := 0y0; + 0;0p, where 9; is the formal adjoint with respect to the T-rigid inner

product (-|-), may not be elliptic, Dl(;qu neither. One classical method to establish the correspond-

ing Hodge theorem is to use Kohn's subelliptic estimate on Y(gq) condition. (cf. Chen-Shaw [3],
Theorem 8.4.2). However, under the assumption that X is a compact CR manifold admitting a

transversal CR S'-action, we can consider the auxiliary differential operator Aéq% = D;(f% —T?
which is elliptic, because locally after choosing an orthonormal basis {Lj}7=1 of T,go’l)X, we have
the expression

n

op0 (0,8) = Yo, (x, Q)P —or(x,8)* > 0.

j=1
(Recall that the principal symbol is coordinate invariant, so we can apply the transversal property

for the circle action, which implies T is non-vanishing, to make T = %, then o7 = i, i.e. o2 =

—&2 < 0 for any nonzero ¢).

(7)

b,m
quite standard, and it works for general elliptic formally self adjoint operator).

Accordingly, we show how to deduce the Hodge theorem of [1," via Aé‘%. (The argument is

Theorem 3.2.

(1) Consider the extension

@ .
0, : Dom D% C L2 (X)L (X)

by

Dom O} = {ue L% (X):Ouel? (X}

Then such extension is self adjoint, which means:

(3.1) (D(q) u‘v) = (u’DéﬁLv) for all u,v € Dom Dl(f,zq N Dom Dl(ﬁ,zq*

bm

(3.2) DomDéf’g1 = Dom Déqr)n*
where

Dom DI(JZ/L/* ={ve L%O,q),m(X) :Vu € Dom Dl(f%, 3¢ > 0 such that ‘(Dl()q;u\v)‘ < c|lu||;2}-
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(2) Spec O consists only of eigenvalues.

b,m

Here, for A € Spec 09 we mean the map

b,m’

() .
A0y :DomOf) c L2 (X) = L2 ) (X)

is either
(a) not injective,
(b) or injective but not surjective,
(c) or bijective but the inverse map is unbounded.
(3) Spec O s a discrete subspace of [0, 00), and for A € Spec 09 the eigenspace

b,m b,m’

H? (X) == {u € Dom O)") - O)) u = Au}.

is a finite dimensional subspace of Q,(B’q) (X). Moreover, the harmonic form

HO(X) = HD (X)

b,m

is isomorphic to the m-th Kohn-Rossi cohomology, i.e.

(3.3) My (X) = H] (X).
Proof.
(1) First of all, we use the basic elliptic regularity of A ,, to claim:
(@) _ 12
(3.4) Dom Dbf?m = Hy gy, m(X)-

For the side Dom ngy)n D H? o (X), it is clear by the continuity of the second order differ-

(09),
Z(qu)n : H(Zo,q),m(X) — L2 )m(X) Conversely, consider the auxiliary elliptic

ential operator [] 0
differential operator

@) ._ @ 2

Ab,m T Db,m - T,

then by ellipticity we can construct the parametrix Q as in Grigis-Sjostrand [7, Theorem
4.1], such that

oA =1d S
where Q is a pseudodifferential operator of order —2, and S is a smoothing operator. Then

for u € Dom Dz(jgﬂ clearly

Il 2 < 1QUAY ) |12 + || Sul| 2

< 1ROl + | Qull e + 1Sl
Since the pseudodifferential operators Q and S act continuously on the Sobolev space, i.e.

Q: Hiy ) (X) = Hfofj),m(x), S Higgym(X) = Hg ), (X) foralls, t € R

are continuous, we can find that u € H(z0 . .(X). So (3.4) holds.

By the claim (3.4), the symmetry condition (3.1) holds, because we can accordingly pick
an approximation

W A Dom O in H2 . (X)

0,
v € Qﬁn q)(X) — v € Dom Db,m b (0,9),m
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such that
Oy 05 € P (X) = O oin L2 ) (X).
This implies
(Sl = i (8 (4{52) = i (ool

and by the definition for the derivative of distribution, (Déﬁu’v]) = (u‘DIgZij). So (3.1)
follows.

As for the (3.2), observe that Dom Dl(,qr)n’ " collects all v € L%O o (X) such that the map

u € Dom Dl(ﬂ,ll > (ngr)nu‘v>
is bounded linear. By Riesz’s lemma, there exists w € L? (X) s.t.

(0,4),m
(D4 ulo) = (ufw)

and this w is denoted by Dé‘%’ “v. Hence, by the symmetric conditions (3.1) and Cauchy-
(7) and all u € Dom 07

b,m b,m’
|(@0ufe) | = [(4|Die) | < ullee - 10800022 < elul

b,m
(q)
b,m

Dom Dl(;qu* C H(Zo,q),m<X)' then we can find that DZ(EL is self-adjoint by (3.4). Recall that
(@),

by Riesz’s lemma, v € Dom L],

Schwarz inequality, for v € Dom [

for some 0 < ¢ < o0. So Dom [1}" € Dom ngrzq’ *. For another side of inclusion, we verify

" if and only if there is w € L%O 0 (X)) such that for all

u € Dom Déqu
(D(q)u‘v) = (u|w).

b,m

Since Qg,? ) (X) € Dom 0 this implies that

b,m’
O0Wo=we L%O o (X) where we view v as a distribution.

b,m
(q)

So by the same a priori estimate for the elliptic operator A,

used earlier, we get

vE H(ZO,q),m(X)
and the claim follows.
(9)

pm consists only of eigenvalues: suppose A € Spec 0w A -0 is

b,m’ b,m
(9)

b,m

First, we argue Spec [

injective, we claim that A — [;" is also surjective and has a bounded inverse, contradicting

(9)

the definition of spectrum. In fact, if A — ;"

is injective, we can observe that:

There exists C > 0 such that H(}\ — Dl(f) )uHLZ > Cl|ul|;2 for all u € Dom Dl(f%.

Rang (A — Dl(ang) = Rang (A — ‘:‘1(7731)'

L
Rang (A — mi ) =ker(A— D(q)’*).

b,m b,m
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Here, Rang (A — Déq%) = {(/\ - Dg?r)n)u :u € Dom Dl(f’%} The contradiction follows by
combining the standard Hilbert space theory, (3.6), (3.7) and Dl(,q; = Dé‘%’* to get

i
2
L

2m(X) = Rang (A —O})) & Rang (A — O}

= Rang (A — DISZL).

So (A — Dl(ﬂ,i)*l exists. However, (3.5) implies the inverse of the resolvent is bounded.

Now, we go back to prove these three observations. For (3.5), suppose it is not true,

i.e. forall j € IN, then we can find u; € Dom DZSZL, [[uj]|2 = 1 such that
1

< Yo =2
e T

Then, again construct the parametrix of the elliptic operator

|a-oim,

b,m

A=A =200 4+ 12

(it's elliptic because o, () (x,8) =—0 A (x,&) # 0), then there is a C’ > 0 such that
b,m b,m

il < (|1 = A0

o+ gl
<C’(H(/\—D(q))u~H g2 + g 2
= b i|| 2 i jlle
< C": a positive constant.

By Rellich’s lemma, the inclusion map

2
H

0,9),m (X) — L2 (X)

(0,9),m
is compact. So there is a subsequence {u;, } of {u;} such that
wj = u € Ly, (X)

with |Ju|| ;2 = 1.
However, for all v € Q{7 (X),

(A =Tmfo)| =] (w]r - 50|

<l [ =00

b,m

LZ
"

< = forsome C"” >0
]

— 0 for derivative in the distribution sense.

But we also have

((/\ — Df}ﬁ)u‘v) = (u‘ (A — Dgf]y)nv)) = lim <uj‘()t - Dé‘%v))

J—00

by the self-adjointness of D,(]q,iq and the completeness of the space of distributions. In con-

(9)

b,m

clusion, u € ker(A — Dl(yq%) contradicting the assumption that A — [J
estimate (3.5) holds.

is injective, so the
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(9)

b,m’

v € Rang (A — Déq)ﬂ)

For (3.6), given v; € Rang [," ,v; — v € L%O 0 m(X) , we have to show

Rewrite v; = (A — oW )uj for u; € Dom 09, then by the estimate (3.5)

b,m bm’

b,m’

H(A - ng,i)uHLz > C||u/| > for all « € Dom 07
we know {u;}%; form a Cauchy sequence in L%O,q),m (X).
So, uj — u € L%O q)m(X) and (A — Dg’%)u = v, ie. v € Rang (A — Dl()qil) Hence, the
closed range property (3.6) is also true.

Finally, for (3.7), we check this by the following two claims:
(3.8) ker(A — Dl(ﬂ% ") is a finite dimensional subspace of Qo (X).

(3.9) Rang (A —O}7)) = ker(A — O7/")*.
If (3.8), (3.9) are true, then by the basic linear algebra, we get (3.7) by

1 1
Rang (A — ) = (ker(A = O )4) " = ker(A — ).

,gq% and D,(gq% = D(q)’*, we have

b,m

For (3.8), on one hand, by the regularity of A
ker(A — OU)") = ker(A — Oy c Q7 (X).

On the other hand, suppose ker(A — Dl(]qr)n) is infinite dimensional, take an orthonormal

(9)

b,m

basis {u]-};?‘;l for ker(A — Dl(;qu)' then the a priori estimate of A
C’ > 0 such that

Il < € (Mwllz + |05,

suggests that there are C,

L ulle) <C
Therefore, Rellich’s lemma gives a subsequence {u;, };2; satisfying
Uj, = U € L%O,q),m(X).

But ||u; — ui||?, = 2, so the L? norm convergence is impossible.
As for (3.9), first note that the side

Rang (A — Déqu) C ker(A — Dl(f}zq’*)L
is clear.
Suppose
Rang (A — Déq%) C ker(A — DIS‘Q{*)L,
then we can find a i € L%O,q),m (X) such that

Yo € ker(A — D;jgf){ Yo ¢ Rang (A — D%) = Rang (A — Dz(;qzi)

2

Forally € Rang (A — i) ), consider a linear subspace W of L (0)m

b,m

(X), which is generated
by yo and Rang (A — mi ), and take a linear map

b,m

fly+tyy) :=teConW.
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Since yp ¢ Rang (A — Déq%), there is 6 > 0 such that ||z — yol|;2 > J for all z € Rang (A —

Déq%) We can hence find that f is bounded linear, for its operator norm
fll = inf{e 2 0+ £y + o) e < cll} < <3
W = = : 0 2 > >~ — .
: Iy +tyolle 1 =% —volliz &

Apply the Hahn-Banach theorem, we have an extension
f: L%O,q),m(X) — C
with
f(yo) = 1by takingy =0, t = 1
and
tildef (y) = 0 for all y € Rang (A — Déq%) by taking t = 0.
By Riesz’s lemma, there exists fjy € L% ) (X) such that

049
f(y) = (vlio)-
In other words, there are
(Yol#0) =1
and
(y|yo) = 0 forall y € Rang (A — DI(EL)
However, by Déq)ﬂ = Déa * the second equation means that

bm

vu € Dom (A~ O), (A =040 )ulgo) = (u|(A = O ) =0,

In particular, this holds for all u € QS,?"” (X),soijp € ker(A — Dl(z7131> = ker(A — Dé‘%’*), and
hence

(yol7o) = 0.

This leads to a contradiction.
(9)

bm 18 also a positive operator, so

(3) Since Spec 07 consists only by ei envalues, and in fact [J
p bm y y g

MullFs = (Oufu) = (13l + [135ul) = 0,

bm

;(]‘21 and that ’Hl(,q% A
dimensional, they follow from the same argument of illustrating ker(A — [0, ) is finite

dimensional. Also, H Z(qu)n LX) C Q,(,? ) X comes form the same regularity trick of Agﬁ’ ) earlier.

i.e. Spec 0w ¢ [0,00). As for the discreteness of Spec [J

b,m

(X) is finite
(@)

b,m

It remains to prove (3.3). Before starting, we introduce the idea of partial inverse (or the

(9)

so called Green’s operator) of L’

. In fact, we can find such operator

N 12 (X) — Dom O

(0,q),m b,m
satisfying
N;Sf)D;(f,)n =1d — H,(ﬁ) on Dole()fQ1
and

Dz(:/%Ngf’) = 1d - 11} on LioqnX:
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where
1 : Dom O\ — ker O is the orthogonal projection.

b,m b,m

The existence of such N,Sf) is as follows: consider the bijective map

1
D(q) : Dom D(q) N (ker Dﬁl) — Rang D(q)

bm * b,m bm*

Then by the bounded inverse theorem, we have a bounded linear map

m b,m m

- 1
,S;” :Rang Dl(f) — Dom D(i]) N (ker Dl(f))
Consider the extension

N KN on Rang Dl(f’%
" 0: on (Rang Déqr)n)L = ker Dl(ﬂ%

In this way, it’s clear that the operator is what we want.
Now, we are ready to prove the final part of the theorem, i.e.

L (X) = (00 = X0
o " Imabf’m )
where
kerdy) := {u e QR (X) : 9y u = 0}
and

md = (30 Vu e QNP (X) :u e QYT (X))
Consider the map

7 :kero” = kerO@

b,m bm

(-1)

b,m

by T(u) := 114 . Then it suffices to show ker T = ImJ

Note that Imééﬁln; Y C ker is clear by ker[

,(;21 C ker 5,%1. For another inclusion ker t C

Imééqn; 1), we need the idea of partial inverse introduced earlier. If u € ker 31(:7721 and H,(,‘f Ju =
0, then

— 0 NPu
=303\ 1 3 50 )N
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The last equality holds because

(@ Byt N (33" 350 Nl ) = (330,337,333 Nl | Ny )
= @y By N u| N3 w)
(note that I(HLE_)Z(”)” =0)
— (3 ay0 (1d — T yul N )
= @y yuINi )
=0.
—(q—l)

Finally, we demonstrate indeed u € Ima
Observe that if N1 := v for u € ker 8( 9 -l q)( X), then

Dz(f,];zw =u—TIu=ue L%O,q)/m(x)

So the elliptic regularity of A( ) ., gives v € ol% )( X), and 8( DNy 31(7 ,21’*0 € Q,(q?’q)(X).
U

3.3. A Scaling Technique. In this part, we introduce the idea of semi-classical approximation of
the scaled Laplcian by the flat Laplcian on C". First of all, we fix a x € X, and take the canonical
patch

D =D x(=4,0):={(z,0) : |z| <€, 10| <6}
as in Theorem 3.1, and we identify D as an open set in C". Take the weighted L? inner product on
o Dby
(F19)ang 1= [ (Flg)e 2D (2)do(z)

where A(z) is the real-valued smooth function in Theorem 3.1.
Now, assume 1 is large enough such that Dy, is bounded open in D, and take the scaled map

Fu : 2z € Digg €D

\F

where Diggn := {z € D : |zj| < logm forallj =1,---,n}. (Here we choose log m just to make
logm

T 0). Now, given a local frame {e;(z ) " of T, *ODD then

{¢/(2) : ] is a strictly increasing index with|J| = g}
is the induced local frame of T*(O’q)D Take the scaled Hermitian metric (:|-)g: on Fj,T*9) D over
Dlogm such that e/ ( f) forms an orthonormal frame. So for the scaled bundle F;, T*00D over
Dlogm, its fiber is locally trivialized by

= {]Z:qla]e] (\/Zﬁ) aj € C} .

FiT*00D
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On the other hand, for f € Q9)D, f = Zm:q'f](z)e](z), we define the scaled form

= T (5=)¢ (J5) = < D

on FXT*04) D over Diog -

LetP := 2]221 a;(z) a%_ be an arbitrary partial differential operator of order 1 on ImF,,, and we use

the notation P, := 2]221 a ](ﬁ) a% to denote the scaled operator on Dlogm. Under this convention,
if we write
u=Yy "u el
T1=q

then
- . 1 e
am(qu) - ﬁFm(au).

For the weighted L? inner product

(f@bm%¢?:ﬁ% (fkﬁwfhwﬁ%%\<j;)dv@)

on the space of compactly supported smooth sections on F}; T*(%7) D over Diog m, the formal adjoint
with respect to such inner product also satisfies

Nk * 1 * [k
am(Pmu) = 7Pm(a ,ZM(P”)'

N

In conclusion, we have

O (Fat) = F (080 ),
where
O = 3,95, + 5,0
and

L), 1= 3920 - #2103,
We are ready to proceed the semi-classical approximation:

Theorem 3.3. There is D,(,? ) = Dgzp)o + € Py on Dlogm, where Py, is a second order partial differential

operator and all the coefficients of Py, are uniformly bounded with respect to m in Ck(f)logm) for every
ke N,and e, — 0asm — o

Proof. We shall compare Dgz,z ¢ and Dé?p)o

We start with the case of g = 0, note that
AMz) =1+0([z]),

9%A(z) = ¢ + O(|z|) for some constant c,

and
(dzj|dzyx) = oj + O(|z]).
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Then

So we have

ey, — Z <5k (5j,k+0(|z|))zma"’<?) - a—zk (9x +0(Iz])) — (0(1) +O(IZ|))7?k>f
1

jk=

and hence

i - (22 (G5) 2 (55) 5 (35)
(6 () om0 () () - 25 ()0 (20)

Sl

Also,
02 f Zy Of [ z
Pam(Faf) = EMM<W>HMI&AWJ
With the fact that
nll_rgoszg oy <2mcp <\/ﬁ> —2@0(2))‘ — 0,

the case for g = 0 is done.
Now, for general g > 1, the argument is almost the same, and there is just some slight difference:
we have to replace J;x by

4

ejjé] = 0:{j’j1""’jq}#{kll"'/kq—ﬁ—l}
Lo vjgt =4k, kg }
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then
(u]0*0) 2mp = (01|0)2mep
lau] _ _J ’ K
- Z gdzj A dZ Z ’(JKdZ
Jl=q =77 |K|=g+1
1sj=n 2m¢
d
= Y ’/ %@ <dzj A dzf’de> AMz)do(z)
= 7D %%
|K|=g+1
1<j<n
! aM] _ gl
- ¥ [ Poe Ma)dolz)
= 9Z;
IK|=q-+1
1<j<n
the rest calculation is almost the same. O

Corollary 3.2 (Semi-classical elliptic estimate). For m > 1, every r > 0 such that Dy, C Diog,, and
s € IN, then there exists a constant C, s > 0 independent of m and the point x( satisfying

el -2, < Cor [ ] Iy

2mE;¢,L2,Dy;
for any u € F Q09 (Dyog ).

Proof. Note that on the compact set D,,

@

||

o 20( ) 290005

B

and
YEARREY

are both bounded, so apply the elliptic estimate to Dgp)o’ we have

_ z z
H”HZmF;;,¢,HS+Z,D, =) //D 0%u|%e Zm‘P(ﬂ)/\< >dv(z)

|a|<s+2
ITI=q

<Cym Y [, @tuPdo(z)

|a| <s+2
[TI=q

< Cxo,r,s,Z (HDS‘?O”

o, * Il:0,.)-
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By Theorem 3.3, for m > 1,

(9) _ ||m@
HDZ%M o Oy u — eumu‘ .
(q)
< |||, . + el Wewtlz,
(9) .
< |0 u b D, + Cllull o, p,,
< D,(ﬁ)u . + C/Huusz*szsﬂ 5. for some constant 0 < C" < 1.
s, 2r mirr s

Plug this result into the above estimate, after some arrangement we can get

HuHZmF;,‘,(p,S-&-Z,Dy S Cx[)/]/,s/?) (HD’((’j)uHHG,DZr + HuHHlezr>

< (q) * s 1) .
- CXO/T/SA <H|:|m " ZmF,T,CP,HS,Dzy * ||uH2mFm¢rHL/D2r

Finally, by compactness of X, after taking finite cover D,, we can conclude the constant is indepen-
dent of xg. O

Lemma 3.1. Forall u € Qg,?’q) (X), on any canonical coordinate patch D we have

Dé’%u = eimee’m‘PDgzg(P(em‘Pe’imeu).

Proof. We claim that

Opu = M09 (Mo M0yy)
and

ézu — eimeemgbé*,Zm(p (em(,be—imeu) .

The first one is some how easier. Let u € Q,(g ) (D), where D is the canonical patch, then we can
write

u=y /u]dzf = ii(z)e™®.

[/1=q

We benefits from the Theorem 3.1 and write

Gu= Y ' <a“f _ia4>(z)au,> dz; A dz!
J1=4

1<j<n
| an;  op(z)amy\ . L
_ ,imb ! ) ouy . J
e Z <azl—|—m 5. 50 dzj Ndz
‘]|T‘1 / /
1<j<n

— eimee—mq)a(eque—imQu)'
To avoid the boundary term of the integration by parts, consider the cut-off function
. x(0) € 65°(=0,9)
Jrx(0)do =1

Now, since dju € QSS'Q‘”X, write

Jju =79(z)e
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Take the pairing with respect to ¢(z) € Q(()O’q) D there is

(gzu eimex(e)g(z)e—2m¢(z)) — (eimGﬁ(Z) eimex(e)g(z)e—zmp(z))
5(2)[8(2))
On the other hand,
(Fule™x(0)2(z)e 22 = (u[dy (™ x(0)g(z)e 2" ).

Follow the calculation earlier,
3 (e x(6)g(z)e2m)

is

d (emeq)(z)g](Z)) 9 0 (™ (0
/ imb . —2m(z) im _ _]
]|§_1 (X(Q)e aZ] +1e g](Z) aZ] 50 dZ] Adz

1<j<n

which can be arranged to

x(0)e™9 (e’zm"’(z)g(z)) + ¢ 2m(z) pimb (ix'(8) —mx(0))op A g.
With the help of

and

we can rewrite

<u im0 p—imp(2) § (e—imp(z)g(z)x(e))) _

o= MP(2) Jr.2me (g(z)emd)(Z)) ‘g(z>)

So dfu = (z)e™ = eimde=me(z)g*2me (ﬁ(z)em"’(z)), as desired.

2m¢ '

(]

3.4. The model case. To understand the asymptotic behavior of the m-th Szeg kernel, we look for
its close cousin Bergman kernel on the model case C". The idea is given by the submean estimate
of eigenvalues appeared in Berman [2]. We begin with some basic calculations:

Lemma 3.2.
For |J| = q, then we have

a *,2¢p0
fdz] < + = _> de].
Z az] az] ]Z azj azj
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Proof. First recall that
O = 3*23 + 30"
9 ¥ 9 o o “
= zidz; dz;dz;
1]2_: (821- az]d it 9z; az] Zidz)

where

dz;(dz") := dz; A dz!
and

dz; (dz') := dz;.dz".
Observe that we have the relation

dzidz; +dzidz; = 0, i # j,

dazl ifi¢ 1
dzidz;(dz') = 2/ fid ,
0,ifiel
and
0,ifi &1
dz;dz; (dz') = ifig
dzl ifiel

Hence, for |I| =g,

9 9 A 9 9
(/) = <Zazjazj Za- az]>fd]

Lemma 3.3. Writeu = Z‘/”:qu]dzf. If

D§¢)u—o
then
J
a—u]_Olf]éf
and
a *,2470 Of ]
— uy=0ifje .
aZ]'

Proof. Since C" is non-compact, to eliminate the boundary term in the calculation via integration
by parts, we construct the cut off function x(z) € €;°(C",R) such that y = 1 near z = 0, and take

xr(2) = x(g)-
By the assumption and Lemma 3.2, we have

a a *,2¢0 a *,2¢0 a

j€]

Z ( a *,24)0
= — u]
aZj

jeJ

a * ,24)0

o (x%w)) + % (sru)ar
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Fore € (0,1), each component in the second term has the lower bound

ouy| ox 2xru ouy||? duy|ox u ou
<aja§XRl> +‘XRaJ :2<Xa]ax ]> +‘Xa]
Zj 10z 260 Zj Nlogy,12 zj19zj R /o, Zj gy, 12
ou 1]l0 ouy ||
Z_Z‘XRa_I R‘afcuf XRa]
Zj llogy,r2 Zj gy, 2 Zj llogy, 2
au] 2 1C ‘ au]
> —€||XR52 — ——5 F || XR=52
0Z; 2012 € R?2 0z; 20,12

(the constant C comes from the compact support of x)

Ju

Take R — oo then we find that R.H.S converges to (1 —¢) , and combine the same

az] 2¢0,,L2
calculus for the first term, we then have so we have
2
ou ¥ ur|?
L5z +L|5| =0
je] ] 26, L2 j¢] 7 112¢,L2

as desired. O

In conclusion, the above two observations suggest that if we put the extremal function in the

direction ¢/ on C" by
(0) := sup {|u](0)|2 cu e 00, m)

S(Q) 2o

i u=0, [[ullog2 =1},

where ¢o := Y4 )\j|zj|2, then

Theorem 3.4.
Y 5@ (0) = (71)7"| Ay - - - A| if exact q of A are negative and n — q of A; are positive
= e 0 : otherwise

Proof. We start from the case 4 = 0. Note that by Lemma 3.3, we know that for u € €*(C"),
[ag,u = 0, then u is holomorphic, i.e. |u]2 is subharmonic. So by submean inequality in terms of
polar coordinate

u(0)? < (27)" / u(re'®)dg, for any r > 0.
6€(0,27)

where the notation {6 € [0,27)} := {0; € [0,27), j = 1,--- 0

yn}, re? = (rieh, - rpefn), o=

(X rj ) df := db - - - db,. Consider integration with respect to r by
/ [1(0)2ry - e E 2N dr < (2m) / / u(re®)e” SN ry - pdrdd.
r=0 r=0 J6€[0,2

Note that , 1

— —-n —2®(z)n—n _

RH.S = (277) / u(z)e 02 do(z) = s B,z = gy
and ,
2 b .

L.H.S converges to |1(0)] T if Aj > 0 for all j.

So

1
lu(0)]> < —M e Agif Ay > 0 for all j
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and

[u(0)[* = 0if A; < 0 for any j.
On the other hand, if A; > 0 for all j, the constant function f := %)\1 .
Do, f = 0and | f||2g, = 1. Hence Scn (0) = LAy -+ - Ay

- Ay satisfies f € €°(C"),

Now, for any g4 > 1, we manage to deduce the result from the case g4 = 0. To begin with, we

2 . . . .
calculate a%-* #o by taking paring with respect to test functions f, g:

a *,2¢ a
= f g) = (f _g>
(82] 290 aZ] 240
ag e200(z
[ Fafe otz

= [ fe0 L)
a]

9 2
=— $(2)) ¢
/C” 7, (fe )gdv(z)
So we get a%*'z%f Sge.:t (fe’24’°(z)), ie.

aZ]'
a *,2¢0 a
i = 4 2A.Z.
82]- aZ] + A]Z]
Apply Lemma 3.3, we immediately have
i__u j=0ifj & ]

az]
and
i*u = —i+2}\2- uy=0ifjeJ
Now, consider the function
il A —22'612\12"2
j(z) = e "= Ny (7)

where
g] = Z_?]' lf] e]J
and
Then 9 9
~ —2Yic )‘"Z'|2
oz, |~ oz C2)
is either 9
2K NP (Z_ku](g)> —0ifkg ]
or

e*ZZje]/\j‘Z”z (_2/\ka+ ai_b”(é)) =0ifk € ].
k

This means 7; is holomorphic; moreover, we have

|u]|24>0 = |ﬁ]|24’o,]
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where

Poj = — ) Az + ) Alzl
il i

and
uy(0) = (0).

If we are not in the case that exactly g of A; are negative, we can rewrite
L2
Py = )_Ajlzl
j=1

where at least one of the ;\j < 0. Then by the assumption [u|yy ;> = 1 and the Fubini-Tonelli’s
theorem, we have

/ |7(0,- -+ ,zj, - .0)|ze—}\j|zj‘2dv(z) < co.

Apply the submean inequality as before, we acquire

ie.

On the other hand, if we have exactly g of A; are negative, we may assume
At A <0.
The argument just used implies
uj(z) = 08  # (A, Ay}

and

‘ 2 2

2 / ~
1=l e = X sl 2 = 1400, 000 (LA

2 ,L2 -
=4 P

200,{,, 1q} L2

Again, by using submean inequality, there is
e O = |44, 03 (0)
< ()7 (=A1) - (A (Agga) -+ (An)
= ()" |Aa] - Al

‘ 2

This is exactly the case when g = 0, so we can deduce that
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3.5. Thelocal S'-equivariant weak CR Morse inequality. Inspired by the result in the last section,
we can study the the local S'-equivariant weak CR Morse inequality by relating the Szeg® kernel
and the extremal function:

Lemma 3.4.

(1) Given any orthonormal basis { fﬁiil of ker D}(],qr)n, consider

dm
=Y lfe)?
k=1

then such sum is independent of the choice of the orthonormal basis.
(2) For every orthonormal frame {e] \J| = q, ] is strictly incrasing} at ;00X locally write the
uec Q0N (X)asu = Z‘ J|=qt je!, then the extremal function in the direction e/ is defined by

S,Sfl)](y) = {sup lup(y)|>:u € kerDb - H”H — /X u2dVy = 1}
And we have the relation

Z S x) forall x € X.

=4
Proof.
(1) For two orthonormal basis {f;} and {g;} for ker Dé y)n, write gj = a; fi, then
51] = (gi|8j)
— k()
= ai-(ﬁ;ékl
d"l
= Z afﬁ;-‘.
k=1

This is equivalent to
A .
izl _ 5.
Y @y = bij.
k=1

Hence Y4 g% = Y (gilg) = Yo abal (filfi) = Yo 6:(fil fi) = Lo |l

(2) First, for any a € ker D( 7 with |la||;2 = 1, then & must be contained in some orthonormal

basis for ker Dé o say { fk}d’” Decompose

dm
D)= YT = Y'Y iy (x)

[J1=q [JI=q k=1

Note that |aj|? < I—Ifj,)](x), SO Hgﬂ)(x) > zmzq/s(q) (x) forall x € X.

m,J
Conversely, fix any xp € X, and let { fk},‘fil be an orthonormal basis for ker Déﬁ;, then for

any x near X, construct

iy I,
) = (kz |fk,](x0)|2> Z froj(x0) fie(x
1 k=1



32 SHEN, WEI-CHUAN

Clearly, we have D,gq% B =0, and also
1
18I = | AT Y (g (c0) ) i (300 () Vi)
1 e (x0) 12 Kz

Y Loy (x0) 2Ll
Zk:l | fiy (x0)[?

=1.

Finally, there is IT,7) (xo) = L4, | fiy 2 = B (x0) > < 87 (xo).

We are now ready to derive Theorem 2.1:

(1) Fix any xo € X, take a canonical patch D = D x (-6, ) around x(, and the pairing (z, 6, ¢)
such that it is trivial at xg.
Now, for any u € ker Dl(;qu (X), then on D we have

2]
imf
u(z,0) = ii(z)e™ by Tu = imu, T—ag

and
D%z)m (z) = 0by Lemma 3.1, where v,,(z) := ") (z)

If we also assume 1 = |Ju| 2 := [ |[u[?dVx, then
1> / u2dVy

= [ Fou(z) e 20200 A (2)do 2)do

_ / / (2)|%e~ 2 A (2)dv(2))d6

Consider the scaling @, (z) := m™2 em(P(%) il (%ﬂ) = m~2F;(e"?)i(z)), then the above
calculation suggests that

z z
|6 (2)]|3 B, 2mFs / |G (2 —2m¢(7;)A (ﬂ) do(z) < /D o (z)[2e 2@\ (2)do(z) < 5

for any r such that D,, C Dlogm.
Also, we can find that the scaled Laplacian

04 5 (2) = 0 by OY) 01(2) = 0.

These observations motivate us to apply the semi-classical elliptic estimate Proposition 3.2,
so we have

Hﬁm( )HDV 2mE ¢, H5+2 < Cs r,0°
Here, we may assume C} , ; is independent of x, since the compactness of X ensures ¢ can
be picked independent of xy. Apply the results above and the Sobolev’s inequality,

m~"u(xo) [ = m™"]i(2(x0))]* = [5m(0)* < Cllom(2) I 5, g s> < C

where C' is a constant independent of xg and m.
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So we can conclude that

sup{m’”H,(ﬂ) (z):meN,x € X} < oo,

(2) On the other hand, by the definition of lim sup, we can find a sequence {u,, } in 1Y with

b,mk

||ttm, || 12 = 1 such that

lirn?joljp m_"S,(Z)](xo) = kh_}r?o " [, 1 (x0) %
Again, on D we have
umk - amkeZWZke
and
Dé‘fr)@emk"’(‘z)ﬁmk (z) = 0by Lemma 3.1
Also, let
~ o (=) Z _ =S (omp(z) 5
O, (z) :=m~2e V4 ( ) =myg 2F;, (e™9'%ii(z)),
A/ My k
~ 1
o auzpie) < 5 Y I iz =1
and

0 6, (z) = 0.
Similar to the case in the first part, we apply the semi-classical elliptic estimate Corollary
3.2:
For my > 1, every r > 0 such that D,, C ﬁlogm and s € IN, then there exists a constant
crs > 0 independent of my and the point xq satisfying

Hﬁmk”mP,;k(p,Hsﬂ,D, < Gsr (HﬁmkHkaF;;,k@Lz,Dz, + HDr(vj)ﬁmk 2myF, ¢,H5,Dzr> :
This leads to
|| 5mk HZmF;,kqb,Hsﬁ,D, < Cs,r,é-
Outside Dlogmk, we extend 7, by zero. Then by Sobolev’s compact embedding theorem
and diagonal process, we find a subsequence

Oy, — 0= ) 'v;(2)dz) € Q0 (C")
] 1=
in ¢ (K) topology for any compact set K C C".

Moreover, the limit process leaves
(@), —
opv =0

and

So we obtain
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and
2
lim sup m_”S(q) (x0) = lim mk (m ) (x0)
m—oo m] ]—>oo ]
2
= ].lgg (T, ) ](0)
=:!U](0)!2
(9)
< — .
< 5558,(0)

Finally, combine the above calculation, Theorem 3.4 and Theorem 3.4

lim sup m "1 (x0) = lim sup ™" ) /S,(;’,)](xo)

m—oo m—o0 m:q

< leimsupmfnsr(f,)](xo)
[Jl=q ™7

1
— 2(SS§C’2 (0)
1 1
:2*527.5,1\ 1 An|lx(g) (%0)-

With the third part in Theorem 3.1, we can choose § = % — € when xy € X}, so we can
deduce forallk € N, xp € Xy # @, thenforallg =0,1,---

lim sup m "1 (x0) <

m—00 27"t

1\detﬁ 11x(q)(x0)-

4. ASYMPTOTIC BOUNDS FOR THE DIMENSION OF TORUS EQUIVARIANT CR SECTIONS

4.1. Basic settings and the operator —iTy. We start with some basic terminology, and illustrate the
idea of Hendrick-Hsiao-Li [8] , where they use the transversality condition to reduce our problem
to the case for R-action

Let T ~ X be a CR manifold of dimg X = 2n + 1, n > 1 with a torus action. We denote the
group action as

(e®,...,e%) : T? x X — X by ((eiel,- . ,eied),x) (e, e%) ox.

Consider the fundamental vector fields in each directions of T% by

0

Tiu(x) := 89]

u((l,---,eisf,---,l)ox>,foralljzl,---,d, x € X.
6,=0

We say that the group action is
(1) CR, if [T}, C®(X, T0X)] € C*(X, T'’X) foreachj=1,--- ,d.

(2) transversal, if there exists a pair (y1,- -+, 1q) € R4\ (0, ) such that
d
TOX@PTIXEPC(Y piTj)(x) = CTX
j=1
forall x € X.

From now on, we assume the condition for CR and transversality, and this leads to
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Proposition 4.1. Tid, = 0,7Tj forall j =1,,,d.
Proof. Since the transversal properties is an open condition, by the continuity we have

TOX ST X @ Cluja Ty + - + pjaTs) = CTX

where ~ -
H1 U2 J2%) . Ha

M1 M2+E€ Hz+€ ... HjTE
. — -+ - —+

MAKM@ S

M1 2 M3 ... Mg TE]

is an invertible matrix. Consider the vector fields

d
To, :== Z #ixTk,s
k=1

which induce CR, transversal group actions. So similar to the case in Hsiao-Li [9], after selecting
the canonical patch from Baouendi-Rothschild-Treves [1], we have

Toljéb = abTO,j foreachj=1,---d.

In ohter words,
T10p — 0pTh
[H;’,k} r<jk<d | : ) =0,
Tdab — ab Ty
and hence T; commutes with 9. O
This observation suggests a subcomplex of the d;-complex by taking
Q;?’f.].).,pd(X) = {u e Q) (X): Tiu =ipuforalj=1,---,d},

and the restriction

5 0, 0,9+1
o= OV (X)) (X) -

We also have the torus equivariant cohomology
L ker éb

H! .
imo b

b,p1,-~~,pd( ) .

In this section, we aim to establish the Hodge theorem for HZ P Pd(X ). The starting point is to
translate our problem of torus equivariant to the case of R equivariant, via the following series of
observations: First, as indicated in Hendrick—Hsiao-Li [8], there is

Lemma 4.1. We may assume (pi1,-- - ,1q) € R? are linearly independent of Q such that the R-action
induced by Ty := Zle u;T; is still CR and transversal.

Proof. Suppose 1, - -, g are linear dependent over Q, without loss of generality, we may assume
M1, -+, Yi are linear independent over Q, where 1 < k < d. Write

k
= Zi’]',]]/lj, l=k+1,---,d, Tjl € Q.
=
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Consider a new torus action on X defined by

x s (€9, i) x = (N0 ... piNO eNEjarind) L HNT 1) o x,
where N € NN is the least integer such that rjll‘N forallj=1,---k,l =k+1---d. Take the vector
fields .7; on € (X) by

7=

u ((1,- e ,1)~x) , forall u € € (X)

forallj =1,---,k, thenitis clear that

d
j
To:=)_ wTj = ZI\J,%

9
96;

j=1 j=1
where %, e ” L are real numbers linear independent over Q. Also, by construction of Ty, we have
[TO, ¢(X, TLOX)} C ¢°(X, T'X),
and
To(x) © THPX @ TI'X = CT, X forall x € X,
i.e. the induced R-action is also CR and transversal. U

Second, we wish to understand the spectral of —iTy. Consider a Tp-rigid L? inner product (-|-)
induced by the CR, transversal of the R-action, then we have:

Proposition 4.2. The operator —iTy : Q09 (X) — Q09 (X) has a self adjoint bounded extension
—iTo : Dom (—iTo) C Ly ) (X) = Ly ) (X)

where the domain is defined by Dom (—iTy) := {u € L?

(O,q)(X> s —iTou € L%o,q)(X)}'

Proof. As in the case for Hsiao-Li [9], since Tj is transversal, locally we have Ty = % locally;
moreover, if we fix the Ty-rigid inner product (-|-), which induces the volume form with local
expression

dVx(x) =2"A(xq, -+, X2,)dxq - - - dX2,dy for a real-valued smooth function A

then for u,v € Q04) (X), on the canonical patch D C X, we have

(—iToulv) = / (—zaaﬂu)zﬁ")\(xh e Xop)dxy -+ - dxoudy
= / <—102” (x1, -+ ,xzn)> dxy - - - dxo,dy

= /D u—i%UZ”A(xl,- e, Xop)dxy - - dXoudy
= (u| —iTyv).

Apply the Friedrich’s lemma for the first order differential operator —iTy, we can extend the above
equation to the case of u,v € L%O 2 (X), by considering {u;}, {v;} € Q%9 (X) such that

) ) s . o o . o . 2
uj —u, v; = v, —iTou; — —iTou, —iTov; = —iTov in L(o,q)(X)-
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Then
(—iT0u|v) = _lirn(—iTouj\vj) = hm(u]\ — iT()’Uj) = (M’ — iT()Z)).
]—)00 ]%OO
So we get the symmetry condition for —iT.
Next, on one hand, recall that

Dom (—iTp)* :={v € L%o,q)(X) ;3¢ > 0s.t. |(—iToulv)| < c||ul| forall u € Dom —iTp}

where ||ul|2, := (ulu).

So by Riesz’s lemma, for all v € Dom (—iTp)*, there exists w € L%O 0 (X) such that

(—iTou|v) = (u|w) for all u € Dom (—iTp)

Since this also holds for all u € Q04 (X), along with the observation that —iTy is symmetric, it
implies —iTyv = w € L%O,q)(X)’ i.e. Dom (—iTy) C Dom (—iTp)*.

On the other hand, by Cauchy-Schwartz inequality and the symmetry again, we can also find
Dom (—iTy) C Dom (—iTp)*.

In conclusion, —iTy = (—iTp)*. O

Proposition 4.3. Fixa (p1, -+, pa) € Z*, let pg := L., pjpj, where {;}}_, is chosen in Lemma 4.1,
then the L? eigenspace of —iTy is

Lfolq),pﬁ(x) = {u € Dom (—iTy) : —iTou = ppu} = Ly, ., (X) # {0}.

Proof. First, we show that for any fixed (p1,---,ps) € Z°, L%O/q)/pll“'/Pd (X) # {0}. The idea is to
use rational approximation to reduce to the case for circle action. Choose (y1,- -+ ,74) € Q4 closed
enough to (1, -+ ,4g) € R, and consider the vector field Ty := 27:1 7;T;, which induces a CR,
transversal S!'-action, and after some proper scaling, we may assume it has period of 27t. Denote
such S'-action of period 27t by S! x X 3 (e, x) — € - x € X (we use the notation - to distinguish

the one for group action o appeared earlier), let
Xreg = {x € X : € - x # xforall 0 € [0,271) }.
Note that the regular set is non-empty. For p,, := Z;-izl vip;j, there is

2
L{

0, A (0, R :
0a) 1 pa(X) 2 ), X = 07X = {u € Q(X) : Tou = ipu}.

v

So for x := (x', x2441) € Xreg, apply the Theorem 3.1, locally on the canonical patch D, we have
e (X', xp,11) ¢ D forall € (¢,271 — €)

and

)
0X2n41
Hence, consider x(x) € 45°(D) such that [, x(x, Xpp11)dX2411 # 0, and for |]| = g, take

To on D.

up(x) = x(x)e'Prm € 650X,
then
A (0,9) S —ip,0
Qp "X 3 —/0 u(e” - x)e 'Pvde = Axxdx2n+1 #0,

so this part is done.
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Second, for a fixed p € Z¢, by the definition of pp, the direct computation gives L%O D e (X) C
Ey,. Conversely, suppose L%O,q),pl,---,pd(x) C Eps, then there exists a u € Ey, [[ull = 1, u L

2
L (X).
©4).p1- P
Note that —iTy(Qfy . m 1) = (Z}{l I/‘jmj)QZn,‘-umd” for all m € Z%, and by the assumption that

{ yj};-izl are linear independent over Q, we have

d d
pp =) Wipj = ) Hjm; & m=p.
=1 =1

This implies

0: if m = p by the perpendicular assumption

0 : if m # p because the intersection of two eigenspaces is null

(u|QW . 1) = {

In conclusion, for N € N,

lu— Y Q=+ Y QW mul > 1.
meZ4,|m|<N meZAa,|m|<N
However, the L.H.S tends to zero by the theory of Fourier series, this makes a contradiction. O

Theorem 4.1.
(1) A € Spec (—iTy) < A is an L? eigenvalue of the form A = Z}i:l 1;p; in Proposition 4.3.
q ~ () — (4)
(2) Hb,m,---,Pd(X) = kery, ., = {u € Dom Oy
subspace of Q,(g?’f.i.)_ pa(X).
Proof.

(1) We here use some general spectral theory of self-adjoint operators (cf. Davies, E. B. [5,

Chapter 2]). Since —iTp : Dom (—iTp) C L%o,q)(X) — L%o,q)(X) is a self adjoint operator,

then S := Spec F C R and there exists a positive finite measure dy on S x IN such that

,pd: Dz@u = 0} is a finite dimensional

L3 (X) = {h(s,n) :Sx N = R| / |h|?du < oo} :
Under this isomorphism, we realize —iTj as
—iTy : h(s,n) € Dom (—iTy) + sh(s,n) € L*(S x N, du)
where
Dom (—iTp) & {h(s,n) € [2(S x N, dy)| / Ish(s, n)|> < oo}.
Now consider A := {Z?Zl uip; = (p1,-++,pa) € Z} and a Borel set B C R such that
BN A =0@. Take the spectral projection of B, which can be seen as
E(B) : h(s,n) — 1p(s)h(s,n).

Then note that for ¢ € Rang E(B), by Qb(iml,-- ¢ C Rang E(A) NRang E(B) = {0}, there

is

- mg)

v(ml/' e /md) € de (g’ng,'”IWng) =0.
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Finally, along with the approximation by Fourier series, we have

g1z + 1 Q- m8 172 = 18 = Qg ma8 I 72 — 0.
Sog=0.
(2) Since 0% — T2 is a self adjoint elliptic o erators, we can repeat the proof of Theorem 3.2.
b 0 ) ptic op P p
O

4.2. The method of rational approximation. With the study of the operator —iTj previously, we
are now ready to approximate the R-action induced by Ty by some sequence of S!-action, and get
the asymptotic bounds for torus equivariant CR sections.

For a fixed (p1,---,p4) € Z“, consider the corresponding & := 2?21 uip; € Spec (—iTp). Then
for each j = 1,,,.d, consider a sequence {py;};>, such that yy; € Q converges to y;, let Ty ==
2?21 i, Tj — To and oy := 2?21 Mkjpj — a«as k — oo. For all m € N, put the space of tours
equivaraint CR sections

HY o (X) = {u € ker D}(}o) : —iTou = mau}

and

A (X):={ue kerDéO) : —iThu = magu}.

b,moy

Note that for all m € IN, we already have

mak

However, the other inclusion may not happen because the issue

4.1) Z HkjPj = Z },jpj for another p # p

occurs. Accordingly, it’s crucial to spec1fy what kinds of lattice point (p1, - - - , ps) makes
dim¢ Hb (X)) = dime %%qma (X),

which answer the question when does dim¢ Hb (X)) = O(m").
We now illustrate how we locate such lattice point: For a fixed (p1,---,ps) € Z*, suppose
pjpj > Oforallj=1,---,d, and consider the case

HY oo (X) = ker OfY) = {u € ker O : —iTou = au} # {0},
where o := Z;l:l #ipj- Then Vm € N, m > 2, we also have mp;p; > 0 for all j, and

ker O .= {u € ker D( ) —iTou = mau} # {0}.

bmu

Hence, Vm € N, one one hand we have ma > 0. On the other hand, m?a? € Spec (Dl(ﬂ) —T3),
which is a discrete subset of R by the ellipticity and positivity of Déq) — T2. So for each m € N,
there exists a constant C,;; > 0 such that

inf{|m2a® — B| : B € Spec (O — T)} = C,, > 0.

However, this is not enough to guarantee the method of rational approximation works. In fact,
under a certain spectral gap assumption, we have the following key lemma:



40 SHEN, WEI-CHUAN

Lemma 4.2. Forafixed (p1,---,ps) € Z° Ole(J),pl,-- (X) # {0}, assume

P

ujpj > O0forallj=1,..,d
and there exists a constant ¢ > 0 such that
inf{|mzzx2 — B?| - B € Spec (~iTy), p # ma, ker O} # {0}, m € N} =C>0.

Then for all m € IN, there exists a large ko € IN independent of m such that for all k > ko, the orthogonal
projection

u € {u € ker Dgo) : Tou = imogu} — Q,(,?,,)Cu € {u € ker Dgo) : Tou = imau}
with respect to the Ty invariant L? inner product (-|-) is bijective.

Proof. The surjectivity holds because it is a projection map. For the injectivity, suppose otherwise,
then for each k € IN,

Juy € ker DE(JO) such that Tyuy = ima,u and HukHiz =1 with Q,(,g,,)‘uk =0.

Since Ty is self adjoint, u; € ker D}go) C Q(O'Q)(X) and Q,E(O)uk = 0, we can take the orthogonal
decomposition

Up =

[ee] [ee]
u; in C* topology, with HukH%z = E ||uk,l\|%z.
=1 =1

Here, Touy; = iy uki, Pr1 7 ma for all I. Note that by Déo) Ty = TOD;(?O), we have uy; € ker Dgo),

so B2, € Spec () — T3). For simplicity, we let By 1 := —ma. Now, we use the estimate on Sobolev
norm of u;, to reach a contradiction. First, since T, — T, there exists ¢, — 0 such that

exlluelzn = 1(To — Tie)ur|72

(o)
=Y |Brs — mag|*||u]|32
4

i
> |Br1 — mag|*||ug 1|7

> m*a?||ug1 |2, when k > 1 makes a; > 0.

By the a Garding’s inequality for the second order strongly elliptic operator Dl()q) — T2, along with

the use of Ty — T again, there is a constant C; such that

luelZs < €1 (Re ((OF = Toymefue ) + Il 32
= C1 (|| Tougl[3> + lluxl|72)
= C1 (I(To — Tx + Tie)ugell72 + lJurcl72)
< Cr (exlluellzp + [ Teurll 72 + [l Z2)

< Crexlluell3p + Cr(mPag +1).
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Second, since we also have T2 — T3, there exists & — 0 such that
ExlluellZ = (15 — TE)ul7

Z m? “k ;Bkl ”kl||L2

2
| (P — m?a?) — (B, — m*a®)|” [JuglI72

IV
Mg

Il
N}

ZHZ

Hﬁ — m?a| — [m*ag — m*a?||” |[ui |7

\Y;
WMg

41

> (2m —1)*C* Y |lug||7. when k > 1 makes |af — a?| < 2C.

1>2

(9)

By the a priori estimate for the second order elliptic operator [J;
T,f — T3 again, there is a constant C; such that

2
Il < G2 (@ - T

= Ca (I Tquxll2 + lluxll?2)

+¢h%H§)

= Co (I(T5 — T¢ + T ukl| T2 + [l 72)

< Co (&elluellFe + | Tousel|Z2 + lloel|72)
< Co&yllugll3 + Co(m*af + 1)

— Tg, along with the use of

Hence, if we denote kg > 1 to be the number such that all the above estimate holds, then

1= [|ug, 172

= ko122 + Y [k |I22
1>2
éko

€k
0ok s+~ [

m2a2
2.2 ~
€k, Cz(m zxko + 1) €k,

<

C2(m4zx%0 +1)

<
— m2a? 01— C1€k0 (Zmz — 1)2C2 1-— CZékO

€k, Cz(ocio + 1) €k, Cz(ﬁé%ﬂ + 1)

< = + = < 11if we take ko larger.

a2 11— C1€k0 Ccz 1- CZéko

and this leads to a contradiction.

(]

Under the same condition of the lemma, since jﬁﬂm a (X) has finite dimension for all m € IN, by

rank-nullity theorem we can conclude that:

Theorem 4.2. For a fixed (p1,-- - ,pa4) € Z° Ole?,pl,---,pd(X) # {0}, assume

wipj > Oforallj=1,..,d

and suppose that there exists a constant ¢ > 0 such that

inf {[m® — B2| : B € Spec (~iTy), B # ma, ker () # {0}, m € N} = C > 0.



42 SHEN, WEI-CHUAN

Then for all m € IN, there exists a large ko € IN independent of m such that for all k > ko
dime 1Y, (X) = dime 40, (X).

4.3. The torus equivariant CR Siu-Demailly—Grauert-Riemenschneider criterion. Fix a lattice
point (p1,- -+, pa) € Z% and the kg as in Theorem 4.2. Then for all m € N, first we apply Theorem
2.3 to the S'-equivaraint tangential Cauchy—Riemann complex (Q,(,?,X;()) (X), éb,mako) induced by Ty,
(note that the period of this circle action may not be 27), that is

(4.2) f( 1)/ dime %ﬂf
j=0

lekOd(fJQ

() = 5 [ Tay(T0X) A exp(~"R520)

‘rl’lle

(Here @y is the canonical one form dual to Tko, Td,(T'?)X is the Tp- -rigid, and hence the T -rigid
tangential Todd class on X; L%’Z] (X) :={u € ker D( i : —iTy,u = may,u}, where D( ) is the Kohn

Laplacian determined by Ty,). Second, by Theorem 2.2, we also have

mrxk

] < (muck(])n/ A n
(4.3) dlmC%mak (X) < 2T s | det Ly|dVx(x) + o(m").

(Here, ﬁx is the Levi form induced by T, and recall that the index set X(q) = {x € X :
L, is nondegenerate and has exactly g negative eigenvalues}). Third, since the CR structure T"?X
is fixed, we have

ker Dé) kerd, = kerab ker D( )

SO
(4.4) Hb moc( ) '%i(,)mako (X) = %?m“ko (X)

In conclusion, when X is a torus invariantly weakly pseudoconvex and torus invariantly pseu-
doconvex at a point; in other words, the Siu’s type condition that £, > 0 forallx € X and £, > 0
for some p € X holds. Then,

(4.5) dime Hy o (X) = dime 4, (X) = dime A, (X) = O(m").
We reason (4.5) as follows: By construction,
To = (%) Ty, mod TOX @ T X

for some y(x) > 0, and
1
wo(x) = @o(x) mod TX @ T* 1 X,
0( ) 'y(x) 0( )

The Cartan’s formula gives
Li(x) = (wo(x), 12, Z4]) = <7 ). 12 zk]> - 7(13()

where {Z; } ', is a basis of T+PX. This leads to £, > 0 for all x € X and /L > 0 for some p € X,
hence on one hand

Lij(x)

A

X(0) is containted in a ball, X(q) = @ forallg > 1

or equivalently

dim¢ ,%”] (X) = o(m") for all j > 1 by Theorem 2.2.

mak
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On the other hand, since « > 0 by our assumption, we also have

(—1) dime )

M-

Il
—

X) = O(m") by Theorem 2.3.

mako (
J

We summarize the above discussion as our main theorem:

Theorem 4.3 (The torus equivariant CR Siu-Demailly-Grauert-Riemenschneider criterion). Let
X be a CR manifold endowed with a transversal, CR torus action on X. Assume X is torus invariantly
pseudoconvex and torus invariantly strongly pseudoconvex at a point. For a fixed (p1,--- ,pq) € Z* such
that ngl,m,pd(x) # {0}, assume

uipj > 0forallj=1,---,d
and suppose that there exists a constant C > 0 such that
inf{]mzlxz — B?| : B € Spec (—iTy), B # ma, kerOy) # {0}, m € N} =C>0.
(where u := 2?21 1ipj, {/\j};i:1 are the transversal data linearly independent over Q) then

dime Hy yyp, .., (X) = dime Hpy (X) = O(m")

+Mpq

We end this section by the torus equivariant Siu-Demailly-Grauert-Riemenschneider criterion
on complex manifolds. Let M be a compact complex manifold of dim¢ M = n with a holomor-
phic torus action, and (L, hL) be a holomorphic line bundle over M with a torus invariant smooth
hermitian metric. Since the torus action is holomorphic and L is also h, we have éTj = Tjé for all
j=1,---d, where Tj are the fundamental vector fields in j-th direction induced by the torus action.
So we can take the space of torus equivariant holomorphic section for (py,- - -, ps) € Z% by

Hp .. (M, L) :={u € €*°(M,L): 0u =0, —iTju = pju}.

Consider the circle bundle X := {v € L* : [o[2,. = 1}, which is a CR manifold endowed with a
natural CR, transversal S!-action on its fiber. We can check that:

(1) The induced tours action
T x St =T A X

also satisfies the CR, transversal properties. In fact, for a fixed (p1,-- -, pa) € 7%, the
transversal data (p1,- - ,#g11) € R4 can be choose to be any pair of real numbers of
the form (pq,---,14,1). As for the CR condition, since the projection 7% : X — M is a
submersion, for all j we can lift T; to X, and denote them as Tj. Combine the 7t¥-relatedness
of Tj and T;, [0y, Tj] = 0 and the assumption that i is tours invariant, we get Tjo, = 97T;.
(Here, one way to understand the assumption that h* is tours invariant is by taking the local
picture. In the canonical patch of Theorem 3.1 with respect to Ty, we say k' is tours invariant
if Tip = 0forall j =1,---d. In this patch we can also write d, = Y <a%_ — iagg) %).
Because Tj are induced by a holomorphic action and T; is 77¥-related to Tj, we can find
[T;, £] = 0,1ie. [0y, Tj] = 0 forall j).

/TZI.
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(2) X preserves the positivity of L by Rl = 1L£., where x := (z,7). In fact, let U be any local
trivialization of L, and s : U — L be the local trivializing section. Take ¢ : U — R such
that |s(z)[?, = e~29() for some real-valued smooth function ¢, then the canonical curvature
is a real positive (1,1) form locally defined by RL := 299¢ = 2 Z?,k:l %dzj A dZ;. (Note
that for another local trivializing section § = gs, where g # 0 is holomorphic, then [5]2, =
e 2 = |g|s?, = e 2*21o8lsl namely ¢ = ¢ — log|g|, where log|g| is harmonic. So
d9¢ = 99¢). Now, for (z,7) in a canonical patch of X, there is a real-valued smooth function
¢(z) as in Theorem (3.1) such that

Ly := EWQ(Z,U)

3) Vm e N, Hy .., (ML") = Hy ., ,(X). This can be check as in Cheng-Hsiao-Tsai [4]:

with the same local picture in the last part, let
Al Fo¥i (X) — QY] (M, L")
mpl,m,mpd . mpl,mmpd,m mp1,~~mpd,m 7

by
u(z, ) = e — s"(2)e"ii(z),

where ii(z) € Q%Il,..‘,mp ,(U). After some straight forward computation, we can find that

A,(,?,[),l,... ,mpg,m 18 well-defined and bijective. Also, we can verify

9 = ap ALY

mpy,---mpq,m:

A(‘?)

mpy,---mpgq,m
So the isomorphism follows.

Combine all the above facts, we can hence conclude a Siu’s type criterion for the bigness of line
bundle L in the sense of torus equivariance by using Theorem 4.3:

Corollary 4.1 (The torus equivariant Siu-Demailly—-Grauert-Riemenschneider criterion). Let M bea
compact complex manifold of dime M = n with a holomorphic torus action T%, and (L, h™) be a holomorphic
line bundle over M with a torus invariant smooth hermitian metric. Take any real numbers {u j}}i:l linearly
independent over Q. If the canonical curvature Rt induced by h™ satisfies RE > 0 and RL > 0 for some
z € M, and suppose that for the given lattice point (py,- - -, pa) € Z* satisfies

ujpj > O0forallj=1,---,d,
and a spectral gap such that for all m € N, and all (pr, -+, pas1) # (mpy, - -+ ,mpg, m) with

ker O : # {0},

Pa+1

€5

N Pd+1
P1Pa (ML
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there is
R ) dt1 2
inf |m (Z Vij) +1)|— 2 }l]'ﬁ]' > 0.
j=1 j=1
Then for such (p1,- -+, pq) € Z%, L is torus equivariantly big, that is
dime Hpyp, ..o, (M, L") = O(m").
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