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ABSTRACT. In this thesis, we study the growth of dimension for the space of torus equivariant CR
sections, and get a torus equivariant Siu–Demailly–Grauert–Riemenschneider type criterion on cer-
tain CR manifolds. As a corollary, we obtain a criterion that when a holomorphic line bundle is torus
equivariantly big.
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1. INTRODUCTION

Finding holomorphic object has always been a main theme in the complex geometry. Let M
be a compact complex manifold, since all holomorphic functions on M are constant functions by
Liouville’s theorem, people study holomorphic sections of a holomorphic line bundle L over M
instead, and the behavior of the growth of the dimension for the space of holomorphic sections
H0(M, Lk) := {u ∈ C ∞(M, Lk) : ∂̄u = 0} when k → ∞ turns out to be a core issue. The first
concerning result shall be Siegel’s lemma (c.f. Ma–Marinescu [10, Lemma 2.2.6]), which states that
without any positivity assumption for L, there is

(1.1) dimC H0(M, Lk) . kn for all k ≥ 1.
1
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In 1950’s, Kodaira found that if L is positive, then L is big, namely

(1.2) dimC H0(M, Lk) = O(kn),

where n := dimC M. This result can be derived by the combination of vanishing property with
the index theorem. On one hand, by the Kodaira–Serre vanishing theorem (c.f. Ma–Marinescu [10,
Theorem 1.5.6]), if L is positive, then the higher Dolbeault cohomology of

(
C ∞(M, T∗0,•M⊗ Lk), ∂̄

)
vanishes, namely

(1.3) Hq(M, Lk) = 0 for all q ≥ 1, k� 1.

On the other hand, the Riemann–Roch–Hirzebruch theorem suggests that

(1.4)
n

∑
q=0

(−1)q dimC Hq(M, Lk) =
∫

M
Td(T1,0M)ch(Lk) =

kn

n!

∫
M

(
iRL

2π

)n

+ o(kn) = O(kn).

when L is positive. From (1.3) and (1.4), we get Kodaira’s (1.2), and this is important because
people can hence produce many holomorphic sections, and it is exactly the first step toward the
celebrated Kodaira’s embedding theorem, which states that a holomorphic line bundle L over a
compact complex manifold is positive if and only if L is ample.

In 1970’s, Grauert and Riemenschneider tried to generalize the result from Kodaira. Roughly
speaking, they quested when a compact complex manifold M is bimeromorphic to a projective
one, that is M is Moishezon. It’s a known characterization that a manifold M is Moishezon if and
only if it carries a big line bundle L, in other words, (1.2) holds (Ma–Marinescu [10], Theorem
2.2.15). In 1983 and 1984, Siu [11] and Demailly [6] find different criteria for the bigness of a semi–
positive line bundle, respectively; namely, let M be a compact connected complex manifold of
complex dimension n, and (L, hL) be a Hermitian line bundle over M, then M is Moishezon if one
of the following conditions is verified:

(S) (Siu’s condition)

iRL is semi-positive and positive at a point over M,

(D) (Demailly’s condition) ∫
M(≤1)

(
iRL

2π

)n

> 0.

Here RL is the canonical curvature induced by hL and M(≤ q) := ∪q
j=1M(j), where

M(q) := {x ∈ X : iRL
x is non-degenerate with exactly q negative eigenvalues}.

(Note that (S)⇒(D), since in this case M(1) = ∅, M(0) 6= ∅, iRL ≥ 0 and iRL > 0 on a ball).
The condition (D) is a direct corollary of the influential holomorphic Morse inequality, which was
first appeared in Demailly [6]. Demailly was inspired by Wittens analytic proof of classical Morse
inequality; the role of Morse function is played by the Hermitian metric of L, and the Hessian of
the Morse function is replaced by curvature RL instead. With the study of spectral behavior of the
Kodaira Laplacians �k on Lk for k large by the method of semi-classical and heat kernel, Demailly
successfully established

(1.5)
q

∑
j=0

(−1)q−j dimC H j(M, Lk) ≤ kn

n!

∫
M(≤q)

(−1)q
(

iRL

2π

)n

+ o(kn).
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Combine the case q = 1 in (1.5) and the Siegel’s lemma (1.1), we can find that L is big when the
condition (D) holds . We pause here a while to explain (1.5) more, which leads to the generalization
of (1.3) and (1.4). In fact, by some linear algebraic argument, when q = n, (1.5) gives the asymptotic
Riemann–Roch theorem

n

∑
j=0

(−1)j dimC H j(M, Lk) =
kn

n!

∫
M(≤n)

(−1)q
(

iRL

2π

)n

+ o(kn).

Also, for all j = 0, · · · , n, we can deduce that

(1.6) dimC H j(M, Lk) ≤ kn

n!

∫
M(q)

(
iRL

2π

)n

+ o(kn),

which gives the asymptotic vanishing property

dimC H j(M, Lk) = o(kn) for all j ≥ 1, k large

when the condition (S) holds.
In some recent progress, the growth order of the equivariant holomorphic sections of equivari-

ant line bundles plays an important role in geometric quantization as well as equivariant complex
algebraic geometry. The classical method of Siu [11] and Demailly [6] can not be applied directly
to the equivariant setting. In this thesis, for the torus equivariant case, we can reduce the problem
to certain CR manifold with an extra torus action. Let M be a compact Hermitian manifold of
complex dimension n endowed with a holomorphic torus action Td, (L, hL) be a holomorphic line
bundle over M with a smooth Td-invariant Hermitian metric, and Tj be the fundamental vector
fields induced by Td in j-th direction. For (p1, · · · , pd) ∈ Zd, let

H0
p1,··· ,pd

(M, Lk) := {u ∈ C ∞(M, Lk) : ∂̄u = 0, −iTju = pju for all j = 1, · · · , d}

be the space of Td-equivariant holomorphic sections. We want to ask what (p1, · · · , pd) ∈ Zd

makes

dimC H0
kp1,··· ,kpd

(M, Lk) = O(kn).

This is not so clear even when some positivity conditions for the torus invariant curvature on
L holds. The obstruction mainly comes from the torus action may even not be locally free. To
overcome this issue, triggered by Hendrick–Hsiao–Li [8], we consider the circle bundle

X := {v ∈ L∗ : ‖v‖2
hL∗ = 1}

which is a also CR manifold of real dimension 2n + 1 with a naturally fiberwise circle action. Since
this action is CR, transversal, we can take a natural CR, transversal Td+1 = Td × S1 action on X.
By the isomorphism

H0
p1,··· ,pd

(M, Lk) ∼= H0
b,p1,··· ,pd,k(X) := {u ∈ C ∞(X) : ∂̄bu = 0; ∀j = 1, · · · , d, −iTju = pju}

where ∂̄b is the tangential Cauchy–Riemann operator with respect to the natural Reeb’s vector field
induced by CR, transversal Td+1 action, we then turn the problem to the study of torus equivariant
CR sections. The main point is that the induce R-action by Td+1 is locally free, and it is the semi-
classical limit for S1-action. So we can approximate our object with the known case of circle actions.
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Following the framework in Hendrick–Hsiao–Li [8], we consider a real 2n+ 1 dimensional com-
pact CR manifold X with a CR transversal torus action Td. Namely, for each fundamental vector
field Tj, [

Tj, C∞(X, T1,0X)
]
⊂ C∞(X, T1,0X)

and there exists (µ1, · · · , µd) ∈ Rd \ (0, · · · 0) such that

T1,0
x X

⊕
T0,1

x X
⊕

C(
d

∑
j=1

µjTj)(x) = CTxX for all x ∈ X

where T1,0X is the abstract CR structure of X. In this case,

Tj∂̄b = ∂̄bTj for all j = 1, · · · , d.

So for all (p1, · · · , pd) ∈ Zd, we can consider the ∂̄b subcomplex
(

Ω(0,•)
p1,··· ,pd(X), ∂̄b,p1,··· ,pd

)
, where

the q-th Fourier component is given by

Ω(0,q)
p1,··· ,pd(X) := {u ∈ Ω(0,q)(X) : −iTju = pju for all j = 1, · · · , d}

and the q-th cohomology group Hq
b,p1,··· ,pd

(X).

Let α := ∑d
j=1 µj pj, T0 := ∑d

j=1 µjTj, and (·|·) be the T0-rigid L2 inner product on Ω(0,q)(X) such
that (−iT0u|v) = (u| − iT0v) for all u, v ∈ Ω(0,q)(X). Let L2

(0,q)(X) be the completion of Ω(0,q)(X)

with respect to (·|·). We may assume {µj}d
j=1 is linearly independent over Q, and consequently for

the self-adjoint operator −iT0, Spec (−iT0) ⊂ R only consists of eigenvalues; in fact,

β ∈ Spec (−iT0) ⇐⇒ β =
d

∑
j=1

µj pj for some (p1, · · · , pd) ∈ Zd

and

L2
(0,q),p1,··· ,pd

(X) = {u ∈ L2
(0,q)(X) : −iT0u = αu}.

We also have

Hq
b,p1,··· ,pd

(X) ∼= ker�(q)
b,α := {u ∈ ker�(q)

b : −iT0u = αu} is a finite dimensional subspace of Ω(0,q)(X)

where �(q)
b := ∂̄∗b ∂̄b + ∂̄b∂̄∗b is the Kohn Laplacian determined by T0. Although �(q)

b may not be

elliptic or hypoelliptic, the �(q)
b − T2

0 is a second order self-adjoint elliptic differential operator.
The main idea, which was suggested to me by Professor Chin-Yu Hsiao, is to approximate the

R-action induced from T0 by a suitable S1-action, which we now explain. For (p1, · · · , pd) ∈ Zd

and α := ∑d
j=1 µj pj ∈ Spec (−iT0), we choose a sequence of rational numbers {µk,j}∞

k=1 converging
to µj for each j. Then T̂k := ∑d

j=1 µk,jTj → T0 and αk := ∑d
j=1 µk,j pj → α as k→ ∞. Put

K
q

b,αk
:= {u ∈ Ω(0,q)(X) : �(q)

b u = 0,−iT̂ku = αku}.

A priori we have ker�(q)
b,α ⊂ K

q
b,αk

. In this thesis, we proved that there exists lattice points (p1, · · · , pd)

such that ker�(q)
b,α = K

q
b,αk

. Furthermore, using the results in [4, 9], we obtain:
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Theorem 1.1 (=Theorem 4.3). Let X be a compact CR manifold endowed with a transversal, CR torus
action on X. Assume X is torus invariantly pseudoconvex and torus invariantly strongly pseudoconvex at
a point. For a fixed (p1, · · · , pd) ∈ Zd such that H0

b,p1,··· ,pd
(X) 6= {0}, assume

λj pj > 0 for all j = 1, · · · , d

and suppose that there exists a constant C > 0 such that

inf
{
|m2α2 − β2| : β ∈ Spec (−iT0), β 6= mα, ker�(0)

b,β 6= {0}, m ∈N
}
= C > 0

(where α := ∑d
j=1 λj pj, {λj}d

j=1 are the transversal data linearly independent over Q), then

dimC H0
b,mp1,··· ,mpd

(X) = dim H0
mα(X) = O(mn).

Corollary 1.1 (=Corollary 4.1). Let M be a compact complex manifold of dimC M = n with a holomorphic
torus action Td, and (L, hL) be a holomorphic line bundle over M with a torus invariant smooth hermit-
ian metric. Take any real numbers {µj}d

j=1 linearly independent over Q. If the canonical curvature RL

induced by hL satisfies RL ≥ 0 and RL
z > 0 for some z ∈ M, and suppose that for the given lattice point

(p1, · · · , pd) ∈ Zd satisfies

µj pj > 0 for all j = 1, · · · , d,

and a spectral gap such that for all m ∈N, and all ( p̂1, · · · , p̂d+1) 6= (mp1, · · · , mpd, m) with

ker �(0)
p̂d+1

∣∣∣
C ∞

p̂1,··· ,p̂d
(M,L p̂d+1 )

6= {0},

there is

inf

∣∣∣∣∣∣m2

(
(

d

∑
j=1

µj pj)
2 + 1

)
−
(

d+1

∑
j=1

µj p̂j

)2
∣∣∣∣∣∣ > 0.

Then for such (p1, · · · , pd) ∈ Zd, L is torus equivariantly big, that is

dimC H0
mp1,··· ,mpd

(M, Lm) = O(mn).
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2. PRELIMINARIES

We begin from some basic CR geometry, and recall the results for S1-action already known in
Hsiao–Li [9] and Cheng–Hsiao–Tsai [4].
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2.1. Basic CR geometry. Let X be a smooth manifold of dimR X = 2n + 1, n ≥ 1, we say X is a
CR manifold if there is a CR structure, denoted by T1,0X, such that

(1) T1,0X is a subbundle of CTX with dimC T1,0
p X = n for any p ∈ X.

(2) T1,0
p X ∩ T0,1

p X = {0} for any p ∈ X, where T0,1
p X := T1,0

p X.
(3) For V1, V2 ∈ C ∞(X, T1,0X), then [V1, V2] ∈ C ∞(X, T1,0X), where [·, ·] stands for the Lie

bracket.

Note that we can always take a non-vanishing global vector field T such that

T1,0X⊕ T0,1X⊕CT = CTX.

Denote 〈·, ·〉 the paring by duality, and let ω0 be the globally defined non-vanishing 1-form satis-
fying

〈ω0, T1,0X⊕ T0,1X〉 = 0 and 〈ω0, T〉 = −1.

Then the Levi form is defined by

Lx(ũ, ¯̃v) :=
1
2i
〈ω0(x), [ũ, ¯̃v] (x)〉 ,

where ũ and ṽ ∈ C ∞(X, T1,0X), and by Cartan’s formula we can also express it as

Lx(ũ, ¯̃v) =
−1
2i
〈dω0(x), u(x) ∧ v̄(x)〉

i.e.

Lx :=
−1
2i

dω0(x)
∣∣∣∣
T1,0X

.

Given a Hermitian metric 〈·|·〉 on CTX, it induces a Hermitian metric on CT∗X, and hence on
ΛrCT∗X by

〈u1 ∧ · · · ∧ ur|v1 ∧ · · · vr〉 = det
(〈

uj
∣∣uk
〉r

j,k=1

)
.

Define T∗1,0X := (T0,1 ⊕CT)⊥ ⊂ CT∗X, and T∗0,1X := T∗1,0X. Let the orthogonal projection

π(0,q) : ΛqCT∗X → T∗(0,q)X := Λq(T∗0,1X)

with respect to this Hermitian metric, then the tangential Cauchy–Riemann operator is defined by

∂̄b := π(0,q+1) ◦ d : C ∞(X, T∗0,qX)→ C ∞(X, T∗0,q+1X).

By Cartan’s formula, we can check that
∂̄2

b = 0.

Also, consider the formal adjoint ∂̄∗b with respect to the L2 inner product

( f |g) :=
∫

X
〈 f |g〉dVX,

where locally

dVX(x) =

√
det
〈

∂

∂xj
| ∂

∂xk

〉
dx1 ∧ · · · ∧ dx2n+1.

Denote Ω(0,q)(X) := C ∞(X, T∗0,qX), then the Kohn Laplacian is then defined by

�(q)
b := ∂̄∗b ∂̄b + ∂̄b∂̄∗b : Ω(0,q)(X)→ Ω(0,q)(X).
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Different frm the Kodaira Laplacian ∂̄∗∂̄+ ∂̄∂̄∗ in the case of complex geometry, the�(q)
b is not ellip-

tic; locally, if we denote e1(x), · · · , en(x) to be an orthonormal frame of T∗(0,1)
x X and L1, · · · , Ln(x)

be the dual frame of T0,1
x X, then we have

�(q)
b =

n

∑
j=1

L∗j Lj +
n

∑
j,k=1

(ej ∧ e∧,∗
k )[Lj, L∗k ] + lower odeder terms

and

σ
�(q)

b
(x, ξ) =

n

∑
j=1
|σLj(x, ξ)|2.

In particular, there is σ
�(q)

b
(x, ω0) = 0. Moreover, it may even not be hypoelliptic unless the so

called Y(q) condition holds (cf. Chen–Shaw [3]).

2.2. The S1-equivariant weak CR Morse inequality. Let X be a compact connected CR manifold
endowed with a CR, transversal S1-action, i.e. the Reeb vector field T induced by S1-action satisfy

(1)
[
T, C ∞(X, T1,0X)

]
⊂ C ∞(X, T1,0X), and

(2) T(x)⊕ T1,0
x X⊕ T0,1

x X = CTxX for all x ∈ X

respectively. Here, T is given by

Tu(x) :=
∂

∂θ

∣∣∣∣
θ=0

u(eiθ ◦ x) for all u ∈ C ∞(X), x ∈ X.

Such global vector field T matters because it commutes with the operator ∂̄b, i.e.

T∂̄b = ∂̄bT.

So we can we can consider

Ω(0,q)
m (X) := {u ∈ Ω(0,q)(X) : Tu = imu}

and the q-th Kohn–Rossi cohomology

Hq
b,mX :=

ker
(

∂̄b,m : Ω(0,q)
m (X)→ Ω(0,q+1)

m (X)
)

Im
(

∂̄b,m : Ω(0,q−1)
m (X)→ Ω(0,q)

m (X)
)

on the ∂̄b subcomplex

∂b,m : · · · → Ω(0,q−1)
m (X)→ Ω(0,q)

m (X)→ Ω(0,q+1)
m (X)→ · · · .

Choose a T-rigid Hermitian metric 〈·|·〉 on CTX, and construct the L2 inner product (·|·) ac-
cordingly, then we also have T∂̄∗b = ∂̄∗b T with respect to (·|·). Hence ∂̄∗b |Ω(0,q)

m X
= ∂̄∗b,m. Put

�(q)
b,m := �(q)

b

∣∣∣
Ω(0,q)

m (X)
accordingly, and by taking L2

(0,q)(X) to be the completion of Ω(0,q)(X) with

respect to the T-rigid L2 inner product (·|·) induced by 〈·|·〉, in fact there is the Hodge theorem

Hq
b,m(X) ∼= Hq

b,m(X) := {u ∈ Dom �(q)
b : �(q)

b u = 0 and Tu = imu}.



8 SHEN, WEI-CHUAN

To study the asymptotic bounds for the dimension of S1 equivariant CR sections, one way is to
introduce the Szegö kernel

Π(q)
m (x) :=

dm

∑
j=1
| f j(x)|2 :=

dm

∑
j=1
〈 f j(x)| f j(x)〉

where { f j}dm
j=1 is an orthonormal basis for the finite dimensional space Hq

b,m(X). The above defini-
tion is in fact independent of the choice of basis; furthermore,

∫
X

Π(q)
b,m(x)dVX(x) = dimCH

q
b,m(X) = dimC Hq

b,m(X).

For every k ∈N, take

Xk := {x ∈ X : ∀θ ∈ [0,
2π

k
), eiθ ◦ x 6= x and ei 2π

k ◦ x = x}

and we define the regular set by

Xreg := {x ∈ X : ∀θ ∈ [0, 2π), eiθ ◦ x 6= x} := X1.

From now on, we all assume Xreg 6= ∅. In fact, we can also check that Xreg is an open dense subset
of X, and X \ Xreg has measure zero. Also, we collect the information about the positivity of Levi
form by

X(q) := {x ∈ X : the Levi form Lx is non-degenerate and has exactly q negative eigenvalues}.

We are now ready to state one of the main results established by Hsiao–Li in [9]. After careful
calculation of the relation of Kodaira Laplcain and Kohn–Rossi Laplacian, semiclassical approxi-
mation of Kodaira Laplcain and the Bergman kernel on Cn, the local asymptotic behavior of Szegö
kernel can be summarized as:

Theorem 2.1 (Local S1-equivaraint weak CR Morse inequality). Assume the same X, then

(1) ∀x ∈ X, sup{m−nΠ(q)
m (x) : m ∈N, x ∈ X} < ∞.

(2) ∀k ∈N, x ∈ Xk 6= ∅, then ∀q = 0, 1, · · · , n

lim sup
m→∞

m−nΠ(q)
m (x) ≤ kn

2πn+1 |det Lx|1X(q)(x).
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By compactness of X, we can integrate the Szegö kernel and have

lim sup
m→∞

m−n dimC Hq
b,m(X) = lim sup

m→∞
m−n dimCH

q
b,m(X)

= lim sup
m→∞

∫
X

m−nΠ(q)
m (x)dVX(x)

= lim sup
m→∞

∫
Xreg

m−nΠ(q)
m (x)dVX(x)

≤
∫

Xreg

lim sup
m→∞

m−nΠ(q)
m (x)dVX(x)

(Fatou’s lemma is guaranteed by the first part of Theorem 2.1)

≤ 1
2πn+1

∫
Xreg

|detLx|1X(q)(x)dVX(x)

(take k = 1 in the second part of Theorem 2.1)

=
1

2πn+1

∫
X(q)
|detLx|dVX(x),

which implies:

Theorem 2.2 (S1-equivaraint weak CR Morse inequality). Assume the same X, then as m→ ∞

dimC H(q)
b,m(X) ≤ mn

2πn+1

∫
X(q)
|detLx|1X(q)dVX(x) + o(mn).

Given a holomorphic line bundle with a smooth hermitian metric over a compact Hermitian
manifold, the circle bundle plays the role revealing the information for the positivity of the line
bundle, so we can apply the result on CR manifold presented earlier to rebuild the well-known
theorem:

Corollary 2.1 (Demailly’s weak holomorphic Morse inequality). Let M be a compact Hermitian man-
ifold with dimC M = n, (L, hL) be a holomorphic line bundle over M with a smooth hermitian metric. Then
∀q = 0, · · · , n, as k→ ∞,

dimC Hq(M, Lk) ≤ kn

(2π)n

∫
M(q)
|det RL

z |dVM(z) + o(kn).

Here, the curvature RL is the Chern curvature of L, which is a global positive real (1, 1) form (Locally,
RL := 2∂∂̄φ, if we denote the local trivializing section by s : u → L and |s(z)|2hL = e−2φ(z)). Also,
M(q) := {x ∈ M : RL

x is non-degenerate and has exactly q eigenvalues}.

Proof. Take the circle bundle X := {v ∈ L∗ : |v|2L∗ = 1}, which is in fact a CR manifold endowed
with a fiber-wise transversal, CR S1-action. Moreover, by direct computation, locally there is

Lx =
1
2

RL
z for all x ∈ X, z ∈ M.

With the known fact (for example, see Theorem 1.4 in Cheng–Hsiao–Tsai [4])

dimC Hq(M, Lk) = dimC Hq
b,k(X).
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Then Theorem 2.2 gives

dimC Hq(M, Lk) = dimC Hq
b,k(X)

≤ kn

2πn+1

∫
X(q)
|detLx|dVX(x) + o(kn)

≤ kn

2πn+1
2π

2n

∫
M(q)
|det Rz|dVM(z) + o(kn)

=
kn

(2π)n

∫
M(q)
|det Rz|dVM(z) + o(kn).

�

2.3. The S1-equivariant Riemann–Roch–Hirzebruch theorem. We start from some notations and
facts about the rigid Hermitian CR geometry.

One one hand, for each j = 1, · · · , 2n, take Ωj
0(X) := {u ∈ ⊕p+q=j Ω(p,q)(X) : Tu = 0}, and let

Ω∗0(X) :=
2n⊕
j=0

Ωj
0(X).

Since dT = Td, we can again consider the d-subcomplex

d : · · · → Ωj
0(X)→ Ωj+1

0 (X)→ · · ·

and the corresponding equivariant cohomology H j
b,0(X).

On the other hand, we say a function u is T-rigid if Tu = 0, and a vector bundle F of rank r over
X is said to be T-rigid, if X can be covered by some open sets {Uj}r

j=1 such that the trivializing
frames { f j,k}r

k=1 has T-rigid transition functions. Let 〈·|·〉F be a Hermitian metric on F, then we say
it is T-rigid if for every local frame { f j}r

j=1, there is T〈 f j| fk〉F for all j, k = 1, · · · , r.
Now, fix a T-rigid vector bundle F endowed with a T-rigid fiber metric. It is known that (cf.

Cheng–Hsiao–Tsai [4]) there exists a T-rigid connection∇F on F such that for any rigid local frame
{ f j}r

j=1 over a open set D ⊂ X, the connection 1-forms (θj,k)
r
j,k=1 given by ∇F f j = fkθj,k satisfy

θj,k=1 ∈ Ω1
0(D) for all j, k. Accordingly, we take the T-rigid curvature 2-form

Θ(∇F, F) := dθ − θ ∧ θ

and for any real power series h(z) := ∑∞
j=1 ajzj, z ∈ C, set

H(Θ(∇F, F)) := Tr
(

h
(

iΘ(∇F, F)
2π

))
∈ Ω∗0(X).

Then we can check that (cf. Ma–Marinescu [10] and Cheng–Hsiao–Tsai [4])

(1) H(Θ(∇, F)) is a closed form.
(2) For two rigid connection ∇ and ∇′ on F, then

H (Θ(∇, F))− H
(
Θ(∇′, F)

)
= dA

for some A ∈ Ω∗0X.
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Put h(z) := log( z
1−e−z ), and take

Tdb(∇F, F) := eH(Θ(∇,F)).

Then the tangential Todd class of F is defined by

Tdb(F) :=
[
Tdb(∇F, F)

]
∈ H∗b,0(X) :=

2n⊕
j=0

H j
b,0(X).

Note that T1,0X is a rigid vector bundle over X (cf. Cheng–Hsiao–Tsai [4]).
In Cheng–Hsiao–Tsai [4], they established S1-equivariant Riemann–Roch–Hirzebruch theorem:

Theorem 2.3. Assume the same X, then
n

∑
j=1

(−1)j dimC H j
b,m(X) =

1
2π

∫
X

Tdb(T1,0X) ∧ e−
mdω0

2π ∧ω0.

Corollary 2.2 (Riemann-Roch–Hirzebruch theorem). Let M be a compact Hermitian manifold with
dimC M = n, (L, hL) be a holomorphic line bundle over M with a smooth hermitian metric. Then for all
k ∈N,

n

∑
j=1

(−1)j dimC H j(M, Lk) =
∫

M
Td(T1,0M) ∧ ch(Lk).

Proof. As before, take X := {v ∈ L∗ : |v|2L∗ = 1}, and then
n

∑
j=1

(−1)j dimC H j(M, Lk) =
n

∑
j=1

(−1)j dimC H j
b,k(X)

=
1

2π

∫
X

Tdb(T1,0X) ∧ e−
kdω0

2π ∧ω0

=
∫

M
Td(T1,0M) ∧ ch(Lk).

�

3. THE PROOF OF THE S1-EQUIVARIANT WEAK CR MORSE INEQUALITY

In this section, we give a complete survey on Hsiao–Li [9]. Some idea and result involved here
will be in the used later section.

3.1. The BRT trivialization. Let X be a compact connected CR manifold endowed with a CR,
transversal S1-action, then as in Baouendi–Rothschild–Trèves [1], after applying Newlander-Nirenberg’s
theorem by the integrability assumption and the CR, transversal conditions for the S1-action, we
can see that locally X is a Heisenberg group. We summarize this fact along with some related
results in Hsiao–Li [9] as follows:

Theorem 3.1. Assume the same X, then

(1) For all x0 ∈ X, there exists ε, δ > 0, canonical coordinate patch near x0

D := {(z, θ) : |z| < ε, |θ| < δ}

and a local coordinate

(x1, x2, · · · , x2n−1, x2n, x2n+1) = (z1, · · · , zn, θ),
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where zj := x2j−1 + ix2j, θ := x2n+1, such that
(a) the fundamental vector field induced by S1-action is in the form

T =
∂

∂θ
.

(b) We can find a φ(z) ∈ C ∞(D, R) such that{
Zj :=

∂

∂zj
+ i

∂φ(z)
∂zj

∂

∂θ

}n

j=1

forms a basis of T1,0
x X for all x ∈ D.

(c) Follow the notations above, we can take the pair (z, θ, φ) such that(
z(x0), θ(x0)

)
= (0, 0)

and

φ(z) =
n

∑
j=1

λj|zj|2 + O(|z|3) for all (z, θ) ∈ D,

where {λj}n
j=1 are eigenvalues of the Levi form of X at x0 with respect to the chosen T-rigid

metric.
We call such pair (z, θ, φ) is trivial at x0.

(2) Let x0 ∈ Xreg, then there exists an ε0 > 0 and a pair (z, θ, φ) in

D := {(z, θ) : |z| < ε0, |θ| < π}

trivial at x0.
(3) Let x0 ∈ Xk, k > 1, then for all ε > 0, there exists an ε0 > 0 and a pair (z, θ, φ) in

Dε :=
{
(z, θ) : |z| < ε0, |θ| < π

k
− ε
}

trivial at x0.

Corollary 3.1. Let T be the fundamental vector filed induced by the S1-action, then T∂̄b = ∂̄bT

Proof. Locally, in the coordinate patch, for u ∈ Ω(0,q)(X),

Tu =
∂u
∂θ

and

∂̄bu = ∑
|J|=q

1≤j≤n

′
(

∂uJ

∂z̄j
+ i

∂φ(z)
∂z̄j

∂uJ

∂θ

)
dz̄j ∧ dz̄J .

Since the term concerning φ is independent of θ, it’s clear that T commutes with ∂̄b. �

To give the Fourier decomposition of the smooth (0, q) form via −iT, we need some knowledge
about the rigid geometry: A vector field V on D is said to be T-rigid if

(deiθ)xV(x) = V(eiθ ◦ x).

In fact, there exists a so called T-rigid metric 〈·|·〉 on CTX satisfying
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(1) For T-rigid vector field V, W on D,

〈V(x)|W(x)〉 =
〈
(deiθ)xV(x))

∣∣∣(deiθ)xW(x)
〉
=
〈

V(eiθ ◦ x)
∣∣∣W(eiθ ◦ x)

〉
.

(2) T1,0X ⊥ T0,1X and T ⊥ (T1,0X⊕ T0,1X).
(3) If V, W are real vector filed, then 〈V|W〉 ∈ R.

For such T-rigid metric, and any x0 ∈ X, take the canonical coordinate patch

D := D̃× (−δ, δ)

near x0 such that the pair (z, θ, φ) trivial at x0. We identify the patch as an open subset of Cn ×R,
then there exists an orthonormal frame {ej}n

j=1 of T∗0,1D with respect to the fixed T-rigid Hermitian
metric so that

(1) ej(x) = ej(z) = dz̄j + O(|z|).
(2) The volume form of X respect to the fixed T-rigid Hermitian metric on CTX is of the form

dVX(x) = λ(z)dv(z)dθ,

where λ(z) ∈ C ∞(D̃, R) is independent of θ and dv(z) = 2ndx1 · · · dx2n.

With this facts, we can now present the S1-Fourier decomposition.

Proposition 3.1. We can decompose the space orthogonally:

(1) Ω(0,q)(X) = ⊕m∈ZΩ(0,q)
m X .

(2) L2
(0,q)(X) = ⊕m∈ZL2

(0,q),m(X).

Proof. (1) For u ∈ Ω(0,q)(X), θ ∈ (−π, π), we have
∫ π
−π u(eiθ ◦ x)e−imθdθ = O( 1

m2 ) by applying
integration by parts twice. So as in the case of S1 Fourier series,

u(x) = ∑
m∈Z

1
2π

∫ π

−π
u(eiθ ◦ x)e−imθdθ in C∞ topology.

On one hand, let

(Q(q)
m u)(x) :=

1
2π

∫ π

−π
u(eiθ ◦ x)e−imθdθ,

then there is

(Q(q)
m u)(eiφ ◦ x) = eimφ(Q(q)

m u)(x).

for all φ ∈ [0, 2π), i.e. Q(q)
m u ∈ Ω(0,q)

m (X).
On the other hand, for u ∈ Ω and v ∈ Ω(0,q)

n X, where m 6= n. Then because (·|·) is
T-rigid, locally there is

(−iTu|v) =
∫

D

(
−i

∂

∂θ
u
)

v̄2nλ(x1, · · · , x2n)dx1 · · · dx2ndθ

=
∫

D
u
(
−i

∂

∂θ
v̄2nλ(x1, · · · , x2n)

)
dx1 · · · dx2ndθ

=
∫

D
u−i

∂

∂θ
v2nλ(x1, · · · , x2n)dx1 · · · dx2ndθ

= (u| − iTv).
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In other words, we have

m(u|v) = (−iTu|v) = (u| − iTv) = n(u|v),

i.e. (u|v) = 0. In conclusion, Q(q)
m : u ∈ Ω(0,q)(X) 7→ 1

2π

∫ π
−π u(eiθ ◦ x)e−imθdθ ∈ Ω(0,q)

m (X)

is an orthogonal projection, and the Fourier decomposition is orthogonal with respect to T-
rigid (·|·) .

(2) Just take the completion of Ω(0,q)
m X with respect to T- rigid (·|·) .

�

3.2. The Hodge theorem for Kohn–Rossi Laplacian. In this section, we follow the argument ap-
peared in Cheng–Hsiao–Tsai [4] to gain the Hodge theorem for Kohn–Rossi Laplacian. It’s well
known that �(q)

b := ∂̄b∂̄∗b + ∂̄∗b ∂̄b, where ∂̄∗b is the formal adjoint with respect to the T-rigid inner

product (·|·), may not be elliptic, �(q)
b,m neither. One classical method to establish the correspond-

ing Hodge theorem is to use Kohn’s subelliptic estimate on Y(q) condition. (cf. Chen–Shaw [3],
Theorem 8.4.2). However, under the assumption that X is a compact CR manifold admitting a
transversal CR S1-action, we can consider the auxiliary differential operator ∆(q)

b,m := �(q)
b,m − T2,

which is elliptic, because locally after choosing an orthonormal basis {Lj}n
j=1 of T(0,1)

x X, we have
the expression

σ
∆(q)

b,m
(x, ξ) =

n

∑
j=1
|σLj(x, ξ)|2 − σT(x, ξ)2 > 0.

(Recall that the principal symbol is coordinate invariant, so we can apply the transversal property
for the circle action, which implies T is non-vanishing, to make T = ∂

∂θ , then σT = iξ, i.e. σ2
T =

−ξ2 < 0 for any nonzero ξ).
Accordingly, we show how to deduce the Hodge theorem of �(q)

b,m via ∆(q)
b,m. (The argument is

quite standard, and it works for general elliptic formally self adjoint operator).

Theorem 3.2.

(1) Consider the extension

�(q)
b,m : Dom �(q)

b,m ⊂ L2
(0,q),m(X)→ L2

(0,q),m(X)

by

Dom �(q)
b,m := {u ∈ L2

(0,q),m(X) : �(q)
b,mu ∈ L2

(0,q),m(X)}.

Then such extension is self adjoint, which means:

(3.1)
(
�(q)

b,mu
∣∣∣v) =

(
u
∣∣∣�(q)

b,mv
)

for all u, v ∈ Dom �(q)
b,m ∩Dom �(q),∗

b,m .

(3.2) Dom�(q)
b,m = Dom �(q),∗

b,m

where

Dom �(q),∗
b,m := {v ∈ L2

(0,q),m(X) : ∀u ∈ Dom �(q)
b,m, ∃ c > 0 such that

∣∣∣(�(q)
b,mu|v

)∣∣∣ < c‖u‖L2}.
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(2) Spec �(q)
b,m consists only of eigenvalues.

Here, for λ ∈ Spec �(q)
b,m, we mean the map

λ−�(q)
b,m : Dom �(q)

b,m ⊂ L2
(0,q),m(X)→ L2

(0,q),m(X)

is either
(a) not injective,
(b) or injective but not surjective,
(c) or bijective but the inverse map is unbounded.

(3) Spec �(q)
b,m is a discrete subspace of [0, ∞), and for λ ∈ Spec �(q)

b,m, the eigenspace

H(q)
b,m,λ(X) := {u ∈ Dom �(q)

b,m : �(q)
b,mu = λu}.

is a finite dimensional subspace of Ω(0,q)
m (X). Moreover, the harmonic form

H(q)
b,m(X) := H(q)

b,m,0(X)

is isomorphic to the m-th Kohn-Rossi cohomology, i.e.

(3.3) Hq
b,m(X) ∼= Hq

b,m(X).

Proof.

(1) First of all, we use the basic elliptic regularity of ∆b,m to claim:

(3.4) Dom �(q)
b,m = H2

(0,q),m(X).

For the side Dom�(q)
b,m ⊃ H2

(0,q),m(X), it is clear by the continuity of the second order differ-

ential operator �(q)
b,m : H2

(0,q),m(X) → L2
(0,q),m(X). Conversely, consider the auxiliary elliptic

differential operator

∆(q)
b,m := �(q)

b,m − T2,

then by ellipticity we can construct the parametrix Q as in Grigis–Sjöstrand [7, Theorem
4.1], such that

Q∆(q)
b,m = Id− S

where Q is a pseudodifferential operator of order −2, and S is a smoothing operator. Then
for u ∈ Dom �(q)

b,m, clearly

‖u‖H2 ≤ ‖Q(∆(q)
b,mu)‖H2 + ‖Su‖H2

≤ ‖Q(�(q)
b,mu)‖H2 + m2‖Qu‖H2 + ‖Su‖H2 .

Since the pseudodifferential operators Q and S act continuously on the Sobolev space, i.e.

Q : Hs
(0,q),m(X)→ Hs+2

(0,q),m(X), S : Hs
(0,q),m(X)→ Ht

(0,q),m(X) for all s, t ∈ R

are continuous, we can find that u ∈ H2
(0,q),m(X). So (3.4) holds.

By the claim (3.4), the symmetry condition (3.1) holds, because we can accordingly pick
an approximation

vj ∈ Ω(0,q)
m (X)→ v ∈ Dom �(q)

b,m ∩Dom �(q),∗
b,m in H2

(0,q),m(X)
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such that
�(q)

b,mvj ∈ Ω(0,q)
m (X)→ �(q)

b,mv in L2
(0,q),m(X).

This implies(
�(q)

b,mu
∣∣∣v) = lim

j→∞

(
�(q)

b,mu
∣∣∣vj

)
,
(

u
∣∣∣�(q)

b,mv
)
= lim

j→∞

(
u
∣∣∣�(q)

b,mvj

)
,

and by the definition for the derivative of distribution,
(
�(q)

b,mu
∣∣∣vj

)
=
(

u
∣∣∣�(q)

b,mvj

)
. So (3.1)

follows.
As for the (3.2), observe that Dom �(q),∗

b,m collects all v ∈ L2
(0,q),m(X) such that the map

u ∈ Dom �(q)
b,m 7→

(
�(q)

b,mu
∣∣∣v)

is bounded linear. By Riesz’s lemma, there exists w ∈ L2
(0,q),m(X) s.t.(

�(q)
b,mu|v

)
= (u|w)

and this w is denoted by �(q),∗
b,m v. Hence, by the symmetric conditions (3.1) and Cauchy–

Schwarz inequality, for v ∈ Dom �(q)
b,m and all u ∈ Dom �(q)

b,m,∣∣∣(�(q)
b,mu

∣∣∣v)∣∣∣ = ∣∣∣(u
∣∣∣�(q)

b,mv
)∣∣∣ ≤ ‖u‖L2 · ‖�(q)

b,mv‖L2 < c‖u‖L2 ,

for some 0 < c < ∞. So Dom �(q)
b,m ⊂ Dom �(q),∗

b,m . For another side of inclusion, we verify

Dom �(q),∗
b,m ⊂ H2

(0,q),m(X), then we can find that �(q)
b,m is self-adjoint by (3.4). Recall that

by Riesz’s lemma, v ∈ Dom �(q),∗
b,m if and only if there is w ∈ L2

(0,q),m(X) such that for all

u ∈ Dom �(q)
b,m (

�(q)
b,mu

∣∣∣v) = (u|w).

Since Ω(0,q)
m (X) ⊂ Dom �(q)

b,m, this implies that

�(q)
b,mv = w ∈ L2

(0,q),m(X) where we view v as a distribution.

So by the same a priori estimate for the elliptic operator ∆(q)
b,m used earlier, we get

v ∈ H2
(0,q),m(X)

and the claim follows.
(2) First, we argue Spec �(q)

b,m consists only of eigenvalues: suppose λ ∈ Spec �(q)
b,m, λ−�(q)

b,m is

injective, we claim that λ−�(q)
b,m is also surjective and has a bounded inverse, contradicting

the definition of spectrum. In fact, if λ−�(q)
b,m is injective, we can observe that:

(3.5) There exists C > 0 such that
∥∥∥(λ−�(q)

b,m)u
∥∥∥

L2
> C‖u‖L2 for all u ∈ Dom �(q)

b,m.

(3.6) Rang (λ−�(q)
b,m) = Rang (λ−�(q)

b,m).

(3.7) Rang (λ−�(q)
b,m)

⊥
= ker(λ−�(q),∗

b,m ).
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Here, Rang (λ − �(q)
b,m) :=

{
(λ−�(q)

b,m)u : u ∈ Dom �(q)
b,m

}
. The contradiction follows by

combining the standard Hilbert space theory, (3.6), (3.7) and �(q)
b,m = �(q),∗

b,m to get

L2
(0,q),m(X) = Rang (λ−�(q)

b,m)⊕ Rang (λ−�(q)
b,m)

⊥

= Rang (λ−�(q)
b,m).

So (λ−�(q)
b,m)

−1 exists. However, (3.5) implies the inverse of the resolvent is bounded.
Now, we go back to prove these three observations. For (3.5), suppose it is not true,

i.e. for all j ∈N, then we can find uj ∈ Dom �(q)
b,m, ‖uj‖L2 = 1 such that∥∥∥(λ−�(q)

b,m)uj

∥∥∥
L2

<
1
j
‖uj‖L2 =

1
j
.

Then, again construct the parametrix of the elliptic operator

λ− ∆(q)
b,m := λ−�(q)

b,m + T2

(it’s elliptic because σ
λ−∆(q)

b,m
(x, ξ) = −σ

∆(q)
b,m
(x, ξ) 6= 0), then there is a C′ > 0 such that

‖uj‖H2 < C′
(∥∥∥(λ− ∆(q)

b,m)uj

∥∥∥
L2
+ ‖uj‖L2

)
≤ C′

(∥∥∥(λ−�(q)
b,m)uj

∥∥∥
L2
+ m2‖uj‖L2 + ‖uj‖L2

)
≤ C′′ : a positive constant.

By Rellich’s lemma, the inclusion map

H2
(0,q),m(X) ↪→ L2

(0,q),m(X)

is compact. So there is a subsequence {ujk} of {uj} such that

ujk → u ∈ L2
(0,q),m(X)

with ‖u‖L2 = 1.
However, for all v ∈ Ω(0,q)

m (X),∣∣∣((λ−�(q)
b,m)uj

∣∣∣v)∣∣∣ = ∣∣∣(uj

∣∣∣(λ−�(q)
b,mv)

)∣∣∣
≤ ‖uj‖L2 ·

∥∥∥(λ−�(q)
b,m)v

∥∥∥
L2

≤ C′′′

j
for some C′′′ > 0

→ 0 for derivative in the distribution sense.

But we also have(
(λ−�(q)

b,m)u
∣∣∣v) =

(
u
∣∣∣(λ−�(q)

b,mv)
)
= lim

j→∞

(
uj

∣∣∣(λ−�(q)
b,mv)

)
by the self-adjointness of �(q)

b,m and the completeness of the space of distributions. In con-

clusion, u ∈ ker(λ−�(q)
b,m) contradicting the assumption that λ−�(q)

b,m is injective, so the
estimate (3.5) holds.
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For (3.6), given vj ∈ Rang �(q)
b,m, vj → v ∈ L2

(0,q),m(X) , we have to show

v ∈ Rang (λ−�(q)
b,m).

Rewrite vj = (λ−�(q)
b,m)uj for uj ∈ Dom �(q)

b,m, then by the estimate (3.5)∥∥∥(λ−�(q)
b,m)u

∥∥∥
L2

> C‖u‖L2 for all u ∈ Dom �(q)
b,m,

we know {uj}∞
j=1 form a Cauchy sequence in L2

(0,q),m(X).

So, uj → u ∈ L2
(0,q),m(X) and (λ −�(q)

b,m)u = v, i.e. v ∈ Rang (λ −�(q)
b,m). Hence, the

closed range property (3.6) is also true.
Finally, for (3.7), we check this by the following two claims:

(3.8) ker(λ−�(q),∗
b,m ) is a finite dimensional subspace of Ω(0,q)

m (X).

(3.9) Rang (λ−�(q)
b,m) = ker(λ−�(q),∗

b,m )⊥.

If (3.8), (3.9) are true, then by the basic linear algebra, we get (3.7) by

Rang (λ−�(q)
b,m)

⊥
=
(

ker(λ−�(q),∗
b,m )⊥

)⊥
= ker(λ−�(q),∗

b,m ).

For (3.8), on one hand, by the regularity of ∆(q)
b,m and �(q)

b,m = �(q),∗
b,m , we have

ker(λ−�(q),∗
b,m ) = ker(λ−�(q)

b,m) ⊂ Ω(0,q)
m (X).

On the other hand, suppose ker(λ−�(q)
b,m) is infinite dimensional, take an orthonormal

basis {uj}∞
j=1 for ker(λ−�(q)

b,m), then the a priori estimate of ∆(q)
b,m suggests that there are C,

C′ > 0 such that

‖uj‖H2 ≤ C
(

λ‖uj‖L2 +
∥∥∥�(q)

b,muj

∥∥∥
L2
+ m2‖uj‖L2

)
≤ C′

Therefore, Rellich’s lemma gives a subsequence {ujk}∞
k=1 satisfying

ujk → u ∈ L2
(0,q),m(X).

But ‖uj − uk‖2
L2 = 2, so the L2 norm convergence is impossible.

As for (3.9), first note that the side

Rang (λ−�(q)
b,m) ⊂ ker(λ−�(q),∗

b,m )⊥

is clear.
Suppose

Rang (λ−�(q)
b,m) ( ker(λ−�(q),∗

b,m )⊥,

then we can find a y0 ∈ L2
(0,q),m(X) such that

y0 ∈ ker(λ−�(q),∗
b,m )⊥, y0 /∈ Rang (λ−�(q)

b,m) = Rang (λ−�(q)
b,m).

For all y ∈ Rang (λ−�(q)
b,m), consider a linear subspace W of L2

(0,q),m(X), which is generated

by y0 and Rang (λ−�(q)
b,m), and take a linear map

f (y + ty0) := t ∈ C on W.
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Since y0 /∈ Rang (λ−�(q)
b,m), there is δ > 0 such that ‖z− y0‖L2 > δ for all z ∈ Rang (λ−

�(q)
b,m). We can hence find that f is bounded linear, for its operator norm

|| f ||W∗ := inf {c ≥ 0 : ‖ f (y + ty0)‖L2 ≤ c|t|} ≤ |t|
‖y + ty0‖L2

=
1

‖ − y
t − y0‖L2

<
1
δ

.

Apply the Hahn-Banach theorem, we have an extension

f̃ : L2
(0,q),m(X)→ C

with
f̃ (y0) = 1 by taking y = 0, t = 1

and
tilde f (y) = 0 for all y ∈ Rang (λ−�(q)

b,m) by taking t = 0.

By Riesz’s lemma, there exists ỹ0 ∈ L2
(0,q),m(X) such that

f (y) = (y|ỹ0).

In other words, there are
(y0|ỹ0) = 1

and
(y|ỹ0) = 0 for all y ∈ Rang (λ−�(q)

b,m).

However, by �(q)
b,m = �(q),∗

b,m , the second equation means that

∀u ∈ Dom (λ−�(q)
b,m),

(
(λ−�(q)

b,m)u
∣∣∣ỹ0

)
=
(

u
∣∣∣(λ−�(q)

b,m)ỹ0

)
= 0.

In particular, this holds for all u ∈ Ω(0,q)
m (X) , so ỹ0 ∈ ker(λ−�(q)

b,m) = ker(λ−�(q),∗
b,m ), and

hence
(y0|ỹ0) = 0.

This leads to a contradiction.
(3) Since Spec �(q)

b,m consists only by eigenvalues, and in fact �(q)
b,m is also a positive operator, so

λ‖u‖2
L2 =

(
�(q)

b,mu
∣∣∣u) =

(
‖∂̄bu‖2

L2 + ‖∂̄∗b u‖2
L2

)
≥ 0,

i.e. Spec �(q)
b,m ⊂ [0, ∞). As for the discreteness of Spec �(q)

b,m and that H(q)
b,m,λ(X) is finite

dimensional, they follow from the same argument of illustrating ker(λ − �(q)
b,m) is finite

dimensional. Also,H(q)
b,m,λ(X) ⊂ Ω(0,q)

m X comes form the same regularity trick of ∆(q)
m earlier.

It remains to prove (3.3). Before starting, we introduce the idea of partial inverse (or the
so called Green’s operator) of �(q)

b,m. In fact, we can find such operator

N(q)
m : L2

(0,q),m(X)→ Dom �(q)
b,m

satisfying

N(q)
m �

(q)
b,m = Id−Π(q)

m on Dom�(q)
b,m

and
�(q)

b,mN(q)
m = Id−Π(q)

m on L2
(0,q),mX,
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where

Π(q)
m : Dom �(q)

b,m → ker�(q)
b,m is the orthogonal projection.

The existence of such N(q)
m is as follows: consider the bijective map

�(q)
b,m : Dom �(q)

b,m ∩
(

ker�(q)
b,m

)⊥
→ Rang �(q)

b,m.

Then by the bounded inverse theorem, we have a bounded linear map

Ñ(q)
m : Rang �(q)

b,m → Dom �(q)
b,m ∩

(
ker�(q)

b,m

)⊥
.

Consider the extension

N(q)
m :=

Ñ(q)
m : on Rang �(q)

b,m

0 : on (Rang �(q)
b,m)

⊥ = ker�(q)
b,m

.

In this way, it’s clear that the operator is what we want.
Now, we are ready to prove the final part of the theorem, i.e.

Hq
b,m(X) = Hq

b,m(X) :=
ker ∂̄

(q)
b,m

Im∂̄
(q−1)
b,m

where

ker ∂̄
(q)
b,m := {u ∈ Ω(0,q)

m (X) : ∂̄
(q)
b,mu = 0}

and

Im∂̄
(q−1)
b,m := {∂̄(q−1)u ∈ Ω(0,q)

m (X) : u ∈ Ω(0,q−1)
m (X)}.

Consider the map

τ : ker ∂̄
(q)
b,m → ker�(q)

b,m

by τ(u) := Π(q)
m u. Then it suffices to show ker τ = Im∂̄

(q−1)
b,m .

Note that Im∂̄
(q−1)
b,m ⊂ ker τ is clear by ker�(q)

b,m ⊂ ker ∂̄
(q)
b,m. For another inclusion ker τ ⊂

Im∂̄
(q−1)
b,m , we need the idea of partial inverse introduced earlier. If u ∈ ker ∂̄

(q)
b,m and Π(q)

m u =

0, then

u = u−Π(q)
m u

= �(q)
b,mN(q)

m u

= ∂̄
(q),∗
b,m ∂̄

(q)
b,m + ∂̄

(q)
b,m∂̄

(q),∗
b,m )N(q)

m u

= ∂̄
(q)
b,m(∂̄

(q),∗
b,m N(q)

m u)
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The last equality holds because

(∂̄
(q),∗
b,m ∂̄

(q)
b,mN(q)

m |∂̄
(q),∗
b,m ∂̄

(q)
b,mN(q)

m u) = (∂̄
(q),∗
b,m ∂̄

(q)
b,m∂̄

(q),∗
b,m ∂̄

(q)
b,mN(q)

m u|N(q)
m u)

= (∂̄
(q),∗
b,m ∂̄

(q)
b,m�

(q)
b,mN(q)

m u|N(q)
m u)

(note that ∂̄
(q)
b,m∂̄

(q)
b,m = 0)

= (∂̄
(q),∗
b,m ∂̄

(q)
b,m(Id−Π(q)

m )u|N(q)
m u)

= (∂̄
(q),∗
b,m ∂̄

(q)
b,mu|N(q)

m u)

= 0.

Finally, we demonstrate indeed u ∈ Im∂̄
(q−1)
b,m .

Observe that if N(q)
m u := v for u ∈ ker ∂̄

(q)
b,m ⊂ Ω(0,q)

m (X), then

�(q)
b,mv = u−Π(q)

m u = u ∈ L2
(0,q),m(X)

So the elliptic regularity of ∆(q)
b,m gives v ∈ Ω(0,q)

m (X), and ∂̄
(q),∗
b,m N(q)

m u = ∂̄
(q),∗
b,m v ∈ Ω(0,q)

m (X).

�

3.3. A Scaling Technique. In this part, we introduce the idea of semi-classical approximation of
the scaled Laplcian by the flat Laplcian on Cn. First of all, we fix a x ∈ X, and take the canonical
patch

D = D̃× (−δ, δ) := {(z, θ) : |z| < ε, |θ| < δ}

as in Theorem 3.1, and we identify D̃ as an open set in Cn. Take the weighted L2 inner product on
Ω(0,q)

0 D̃ by

( f |g)2mφ :=
∫

D̃
〈 f |g〉e−2mφ(z)λ(z)dv(z)

where λ(z) is the real-valued smooth function in Theorem 3.1.
Now, assume m is large enough such that D̃log m is bounded open in D̃, and take the scaled map

Fm : z ∈ D̃log m 7→
z√
m
∈ D̃

where D̃log m := {z ∈ D̃ : |zj| < log m for all j = 1, · · · , n}. (Here we choose log m just to make
log m√

m → 0). Now, given a local frame {ej(z)}n
j=1 of T∗(0,1)

z D̃, then

{eJ(z) : J is a strictly increasing index with|J| = q}

is the induced local frame of T∗(0,q)
z D̃. Take the scaled Hermitian metric 〈·|·〉F∗m on F∗mT∗(0,q)D̃ over

D̃log m such that eJ
(

z√
m

)
forms an orthonormal frame. So for the scaled bundle F∗mT∗(0,q)D̃ over

D̃log m, its fiber is locally trivialized by

F∗mT∗(0,q)D̃
∣∣∣

z
:=

 ∑
|J|=q

′aJeJ
(

z√
m

)
: aJ ∈ C

 .
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On the other hand, for f ∈ Ω(0,q)D̃, f = ∑|J|=q
′ f J(z)eJ(z), we define the scaled form

F∗m f (z) := ∑
|J|=q

′ f J

(
z√
m

)
eJ
(

z√
m

)
, z ∈ D̃log m

on F∗mT∗(0,q)D̃ over D̃log m.
Let P := ∑2n

j=1 aj(z) ∂
∂xj

be an arbitrary partial differential operator of order 1 on ImFm, and we use

the notation Pm := ∑2n
j=1 aJ(

z√
m ) ∂

∂xj
to denote the scaled operator on D̃log m. Under this convention,

if we write

u = ∑
|J|=q

′uJeJ

then

∂̄m(F∗mu) =
1√
m

F∗m(∂̄u).

For the weighted L2 inner product

( f |g)2mF∗mφ :=
∫

D̃log m

〈 f |g〉F∗m e−2mφ
(

z√
m

)
λ

(
z√
m

)
dv(z)

on the space of compactly supported smooth sections on F∗mT∗(0,q)D̃ over D̃log m, the formal adjoint
with respect to such inner product also satisfies

∂̄∗m(F∗mu) =
1√
m

F∗m(∂̄
∗,2mφu).

In conclusion, we have

�(q)
m (F∗mu) =

1
m

F∗m(�
(q)
2mφu),

where

�(q)
m := ∂̄m∂̄∗m + ∂̄∗m∂̄m

and

�(q)
2mφ := ∂̄∂̄∗,2mφ + ∂̄∗,2mφ∂̄.

We are ready to proceed the semi-classical approximation:

Theorem 3.3. There is �(q)
m = �(q)

2φ0
+ εmPm on D̃log m, where Pm is a second order partial differential

operator and all the coefficients of Pm are uniformly bounded with respect to m in Ck(D̃log m) for every
k ∈N, and εm → 0 as m→ ∞

Proof. We shall compare �(q)
2mφ and �(q)

2φ0
.

We start with the case of q = 0, note that

λ(z) = 1 + O(|z|),

∂α
xλ(z) = c + O(|z|) for some constant c,

and

〈dz̄j|dz̄k〉 = δjk + O(|z|).
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Then

(u|∂̄∗,2mφv)2mφ = (∂̄u|v)2mφ

=

(
n

∑
j=1

∂u
∂z̄j

dz̄j

∣∣∣∣∣ n

∑
k=1

vkdz̄k

)
2mφ

=
n

∑
j,k=1

(
∂u
∂z̄j

dz̄j

∣∣∣∣vkdz̄k

)
2mφ

=
n

∑
j,k=1

∫
D̃

∂u
∂z̄j

v̄k〈dz̄j|dz̄k〉λ(z)e2mφ(z)dv(z)

= −
n

∑
j,k=1

∫
D̃

u
∂

∂z̄j

(
v̄kδjkλ(z)e2mφ(z)

)
dv(z).

So we have

∂̄∗,2mφv =
n

∑
j,k=1

(
v̄k
(
δj,k + O(|z|)

)
2m

∂φ(z)
∂z̄j

− ∂vk

∂zj

(
δj,k + O(|z|)

)
−
(
O(1) + O(|z|)

)
z̄k

)
,

and hence

�2mφ(F∗m f ) =
n

∑
k=1

(
−∂2 f
∂zk∂z̄k

(
z√
m

)
+ 2m

∂φ

∂zk

(
z√
m

)
∂ f
∂z̄k

(
z√
m

))
+

n

∑
j,k=1

((
2m

∂φ

∂zj

(
z√
m

)
−O(1)−O

(
|z|√

m

))
∂ f
∂z̄k

(
z√
m

)
− ∂2 f

∂zj∂z̄k

(
z√
m

)
O
(
|z|√

m

))
.

Also,

�2φ0(F∗m f ) =
n

∑
k=1

−∂2 f
∂zk∂z̄k

(
z√
m

)
+ 2λk

z̄k√
m

∂ f
∂z̄k

(
z√
m

)
.

With the fact that

lim
m→∞

sup
z∈D̃

∣∣∣∣∂α
x

(
2mφ

(
z√
m

)
− 2Φ0(z)

)∣∣∣∣→ 0,

the case for q = 0 is done.
Now, for general q ≥ 1, the argument is almost the same, and there is just some slight difference:

we have to replace δj,k by

ε
j,J
K :=

0 : {j, j1, · · · , jq} 6= {k1, · · · , kq+1}
1 : {j, j1, · · · , jq} = {k1, · · · , kq+1}

,
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then

(u|∂̄∗,2mφv)2mφ = (∂̄u|v)2mφ

=

 ∑
|J|=q

1≤j≤n

′ ∂uJ

∂z̄j
dz̄j ∧ dz̄J

∣∣∣∣∣∣∣∣ ∑
|K|=q+1

′vKdz̄K


2mφ

= ∑
|J|=q
|K|=q+1
1≤j≤n

′
∫

D̃

∂uJ

∂z̄j
v̄K

〈
dz̄j ∧ dz̄J

∣∣∣dz̄K
〉

λ(z)dv(z)

= ∑
|J|=q
|K|=q+1
1≤j≤n

′
∫

D̃

∂uJ

∂z̄j
v̄Kε

j,J
K λ(z)dv(z)

the rest calculation is almost the same. �

Corollary 3.2 (Semi-classical elliptic estimate). For m � 1, every r > 0 such that D̃2r ⊂ D̃log m and
s ∈N, then there exists a constant Cr,s > 0 independent of m and the point x0 satisfying

‖u‖2mF∗mφ,Hs+2,D̃r
≤ Cs,r

(∥∥∥�(q)
m u

∥∥∥
2mF∗mφ,L2,D̃2r

+ ‖u‖2mF∗mφ,Hs,D̃2r

)

for any u ∈ F∗mΩ(0,q)(D̃log m).

Proof. Note that on the compact set D̃r,

e−2mφ
(

z√
m

)
= e−2Φ0(z)−O( |z|

3
√

m )

and

λ

(
z√
m

)
= 1 + O

(
|z|√

m

)

are both bounded, so apply the elliptic estimate to �(q)
2φ0

, we have

‖u‖2mF∗mφ,Hs+2,D̃r
:= ∑
|α|≤s+2
|J|=q

′
∫

D̃r

|∂α
xu|2e−2mφ

(
z√
m

)
λ

(
z√
m

)
dv(z)

≤ Cx0,r,1 ∑
|α|≤s+2
|J|=q

′
∫

D̃r

|∂α
xu|2dv(z)

≤ Cx0,r,s,2

(∥∥∥�(q)
2φ0

u
∥∥∥

Hs,D̃2r
+ ‖u‖Hs,D̃2r

)
.
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By Theorem 3.3, for m� 1,∥∥∥�(q)
2φ0

u
∥∥∥

Hs
=
∥∥∥�(q)

m u− εmPmu
∥∥∥

Hs,D̃2r

≤
∥∥∥�(q)

m u
∥∥∥

Hs,D̃2r
+ |εm| · ‖Pmu‖Hs,D̃2r

≤
∥∥∥�(q)

m u
∥∥∥

Hs,D̃2r
+ C‖u‖Hs+2,D̃2r

≤
∥∥∥�(q)

m u
∥∥∥

Hs,D̃2r
+ C′‖u‖2mF∗mφ,Hs+2,D̃r

for some constant 0 < C′ � 1.

Plug this result into the above estimate, after some arrangement we can get

‖u‖2mF∗mφ,s+2,D̃r
≤ Cx0,r,s,3

(∥∥∥�(q)
m u

∥∥∥
Hs,D̃2r

+ ‖u‖Hs,D̃2r

)
≤ Cx0,r,s,4

(∥∥∥�(q)
m u

∥∥∥
2mF∗mφ,Hs,D̃2r

+ ‖u‖2mF∗mφ,Hs,D̃2r

)
.

Finally, by compactness of X, after taking finite cover D̃r, we can conclude the constant is indepen-
dent of x0. �

Lemma 3.1. For all u ∈ Ω(0,q)
m (X), on any canonical coordinate patch D we have

�(q)
b,mu = eimθe−mφ�(q)

2mφ(e
mφe−imθu).

Proof. We claim that
∂̄bu = eimθemφ∂̄(emφe−imθu)

and
∂̄∗b u = eimθemφ∂̄∗,2mφ(emφe−imθu).

The first one is some how easier. Let u ∈ Ω(0,q)
m (D), where D is the canonical patch, then we can

write
u = ∑

|J|=q

′uJdz̄J = ũ(z)eimθ .

We benefits from the Theorem 3.1 and write

∂̄bu = ∑
|J|=q

1≤j≤n

′
(

∂uJ

∂z̄j
− i

∂φ(z)
∂z̄j

∂uJ

∂θ

)
dz̄j ∧ dz̄J

= eimθ ∑
|J|=q

1≤j≤n

′
(

∂ũJ

∂z̄j
+ m

∂φ(z)
∂z̄j

∂ũJ

∂θ

)
dz̄j ∧ dz̄J

= eimθe−mφ∂̄(emφe−imθu).

To avoid the boundary term of the integration by parts, consider the cut-off function

χ :

χ(θ) ∈ C ∞
0 (−δ, δ)∫

R
χ(θ)dθ = 1

.

Now, since ∂̄∗b u ∈ Ω(0,q−1)
m X, write

∂̄∗b u = ṽ(z)eimθ .
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Take the pairing with respect to g(z) ∈ Ω(0,q)
0 D̃ there is(

∂̄∗b u
∣∣∣eimθχ(θ)g(z)e−2mφ(z)

)
=
(

eimθ ṽ(z)
∣∣∣eimθχ(θ)g(z)e−2mφ(z)

)
=
(
ṽ(z)

∣∣g(z))2mφ
.

On the other hand,(
∂̄∗b u
∣∣∣eimθχ(θ)g(z)e−2mφ(z)

)
=
(

u
∣∣∣∂̄b

(
eimθχ(θ)g(z)e−2mφ(z)

))
.

Follow the calculation earlier,

∂̄b

(
eimθχ(θ)g(z)e−2mφ(z)

)
is

∑
|J|=q−1
1≤j≤n

′

χ(θ)eimθ
∂
(

e−2mφ(z)gJ(z)
)

∂z̄j
+ ie−2mφ(z)gJ(z)

∂φ

∂z̄j

∂
(
eimθχ(θ)

)
∂θ

 dz̄j ∧ dz̄J

which can be arranged to

χ(θ)eimθ ∂̄
(

e−2mφ(z)g(z)
)
+ e−2mφ(z)eimθ

(
iχ′(θ)−mχ(θ)

)
∂̄φ ∧ g.

With the help of ∫
R

χ′(θ)dθ = 0

and ∫
R

χ(θ)dθ = 1,

we can rewrite(
u
∣∣∣eimθe−imφ(z)∂̄

(
e−mφ(z)g(z)χ(θ)

))
=
(

u
∣∣∣eimθχ(θ)

(
∂̄(e−2mφ(z)g(z))−me−2mφ(z)∂̄φ ∧ g

))
=
(

u
∣∣∣eimθχ(θ)e−mφ(z)∂̄

(
e−mφ(z)g(z)

))
=
(

ũ(z)emφ(z)
∣∣∣∂̄ (e−mφ(z)g(z)

))
2mφ

=
(

e−mφ(z)∂̄∗,2mφ
(

ũ(z)emφ(z)
)∣∣∣g(z))

2mφ
.

So ∂̄∗b u = ṽ(z)eimθ = eimθe−mφ(z)∂̄∗,2mφ
(

ũ(z)emφ(z)
)

, as desired.
�

3.4. The model case. To understand the asymptotic behavior of the m-th Szegö kernel, we look for
its close cousin Bergman kernel on the model case Cn. The idea is given by the submean estimate
of eigenvalues appeared in Berman [2]. We begin with some basic calculations:

Lemma 3.2.
For |J| = q, then we have

�(q)
2φ0

( f dz̄J) =

(
∑
j∈J

∂

∂z̄j

∂

∂z̄j

∗,2φ0

+ ∑
j/∈J

∂

∂z̄j

∗,2φ0 ∂

∂z̄j

)
f dz̄J .
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Proof. First recall that

�(q)
2φ0

:= ∂̄∗,2φ0 ∂̄ + ∂̄∂̄∗,2φ0

=
n

∑
i,j=1

(
∂

∂z̄i

∗,2φ0 ∂

∂z̄j
dz̄∗i dz̄j +

∂

∂z̄i

∂

∂z̄j

∗,2φ0

dz̄idz̄∗j

)
where

dz̄i(dz̄I) := dz̄i ∧ dz̄I

and
dz̄∗i (dz̄I) := dz̄iydz̄I .

Observe that we have the relation

dz̄∗i dz̄j + dz̄∗j dz̄i = 0, i 6= j,

dz̄∗i dz̄i(dz̄I) =

dz̄I , if i /∈ I

0, if i ∈ I
,

and

dz̄idz̄∗i (dz̄I) =

0, if i /∈ I

dz̄I , if i ∈ I
.

Hence, for |I| = q,

�(q)
2φ0

( f dz̄J) =

(
∑
j∈J

∂

∂z̄j

∂

∂z̄j

∗,2φ0

+ ∑
j/∈J

∂

∂z̄j

∗,2φ0 ∂

∂z̄j

)
f dz̄J .

�

Lemma 3.3. Write u = ∑′|J|=quJdz̄J . If

�(q)
2φ0

u = 0,

then
∂

∂z̄j
uJ = 0 if j /∈ J

and
∂

∂z̄j

∗,2φ0

uJ = 0 if j ∈ J.

Proof. Since Cn is non-compact, to eliminate the boundary term in the calculation via integration
by parts, we construct the cut off function χ(z) ∈ C ∞

0 (Cn, R) such that χ = 1 near z = 0, and take
χR(z) := χ( z

R ).
By the assumption and Lemma 3.2, we have

0 =

((
∑
j∈J

∂

∂z̄j

∂

∂z̄j

∗,2φ0

+ ∑
j/∈J

∂

∂z̄j

∗,2φ0 ∂

∂z̄j

)
uJ

∣∣∣∣∣χ2
RuJ

)
2φ0

= ∑
j∈J

(
∂

∂z̄j

∗,2φ0

uJ

∣∣∣∣∣ ∂

∂z̄j

∗,2φ0

(χ2
RuJ)

)
2φ0

+ ∑
j/∈J

(
∂

∂z̄j
uJ

∣∣∣∣ ∂

∂z̄j
(χ2

RuJ)

)
2φ0

.
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For ε ∈ (0, 1) , each component in the second term has the lower bound(
∂uJ

∂z̄j

∣∣∣∣ ∂χ

∂z̄j

2χRuJ

R

)
2φ0

+

∥∥∥∥χR
∂uJ

∂z̄j

∥∥∥∥2

2φ0,L2

= 2
(

χR
∂uJ

∂z̄j

∣∣∣∣ ∂χ

∂z̄j

uJ

R

)
2φ0

+

∥∥∥∥χR
∂uJ

∂z̄j

∥∥∥∥2

2φ0,L2

≥ −2
∥∥∥∥χR

∂uJ

∂z̄j

∥∥∥∥
2φ0,L2

1
R

∥∥∥∥ ∂χ

∂z̄j
uJ

∥∥∥∥
2φ0,L2

+

∥∥∥∥χR
∂uJ

∂z̄j

∥∥∥∥2

2φ0,L2

≥ −ε

∥∥∥∥χR
∂uJ

∂z̄j

∥∥∥∥2

2φ0,L2

− 1
ε

C
R2 +

∥∥∥∥χR
∂uJ

∂z̄j

∥∥∥∥2

2φ0,L2

(the constant C comes from the compact support of χ)

Take R → ∞ then we find that R.H.S converges to (1 − ε)
∥∥∥ ∂u

∂z̄j

∥∥∥2

2φ0,,L2
, and combine the same

calculus for the first term, we then have so we have

∑
j∈J

∥∥∥∥∥ ∂u
∂z̄j

∗,2φ0
∥∥∥∥∥

2

2φ0,L2

+ ∑
j/∈J

∥∥∥∥∂uJ

∂z̄j

∥∥∥∥2

2φ0,L2

= 0

as desired. �

In conclusion, the above two observations suggest that if we put the extremal function in the
direction eJ on Cn by

S(q)
J,Cn(0) := sup

{
|uJ(0)|2 : u ∈ Ω(0,q)(Cn), �(q)

2φ0
u = 0, ‖u‖2φ0,L2 = 1

}
,

where φ0 := ∑n
j=1 λj|zj|2, then

Theorem 3.4.

∑
|J|=q

′S(q)
J,Cn(0) =

(π)−n|λ1 · · · λn| if exact q of λj are negative and n− q of λj are positive

0 : otherwise
.

Proof. We start from the case q = 0. Note that by Lemma 3.3, we know that for u ∈ C ∞(Cn),
�2φ0 u = 0, then u is holomorphic, i.e. |u|2 is subharmonic. So by submean inequality in terms of
polar coordinate

|u(0)|2 ≤ (2π)−n
∫

θ∈[0,2π)
u(reiθ)dθ, for any r > 0.

where the notation {θ ∈ [0, 2π)} := {θj ∈ [0, 2π), j = 1, · · · , n}, reiθ := (r1eθ1 , · · · , rneθn), r :=
(∑n

j=1 r2
j )

1
2 , dθ := dθ1 · · · dθn. Consider integration with respect to r by∫ ∞

r=0
|u(0)|2r1 · · · .rne−∑n

j=1 2λjrj
2
dr ≤ (2π)−n

∫ ∞

r=0

∫
θ∈[0,2π)

u(reiθ)e−∑n
j=1 2λjrj

2
r1 · · · rndrdθ.

Note that
R.H.S = (2π)−n

∫
Cn

u(z)e−2Φ0(z)2−ndv(z) =
1

(4π)n ‖u‖
2
2φ0,L2 =

1
(4π)n

and
L.H.S converges to |u(0)|2 1

4λ1 · · · , λn
if λj > 0 for all j.

So
|u(0)|2 ≤ 1

πn λ1 · · · λn if λj > 0 for all j
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and
|u(0)|2 = 0 if λj < 0 for any j.

On the other hand, if λj > 0 for all j, the constant function f := 1
πn λ1 · · · λn satisfies f ∈ C ∞(Cn),

�2φ0 f = 0 and ‖ f ‖2φ0 = 1. Hence SCn(0) = 1
πn λ1 · · · λn.

Now, for any q ≥ 1, we manage to deduce the result from the case q = 0. To begin with, we
calculate ∂

∂z̄j

∗,2φ0 by taking paring with respect to test functions f , g:(
∂

∂z̄j

∗,2φ0

f

∣∣∣∣∣g
)

2φ0

=

(
f
∣∣∣∣ ∂

∂z̄j
g
)

2φ0

=
∫

Cn
f

∂g
∂z̄j

e−2φ0(z)dv(z)

=
∫

Cn
f e−2φ0(z) ∂ḡ

∂zj
dv(z)

= −
∫

Cn

∂

∂zj

(
f e−2φ0(z)

)
ḡdv(z)

So we get ∂
∂z̄j

∗,2φ0 f = − ∂
∂zj

(
f e−2φ0(z)

)
, i.e.

∂

∂z̄j

∗,2φ0

= − ∂

∂zj
+ 2λj z̄j.

Apply Lemma 3.3, we immediately have

∂

∂z̄j
uJ = 0 if j /∈ J

and
∂

∂z̄j

∗
uJ =

(
− ∂

∂zj
+ 2λj z̄j

)
uJ = 0 if j ∈ J.

Now, consider the function
ũJ(z) := e−2 ∑j∈J λj|zj|2 uJ(ζ)

where
ζ j := z̄j if j ∈ J

and
ζ j := zj if j /∈ J.

Then
∂

∂z̄k
ũJ =

∂

∂z̄k

(
e−2 ∑j∈J λj|zj|2 uJ(ζ)

)
is either

e−2 ∑j∈J λj|zj|2
(

∂

∂z̄k
uJ(ζ)

)
= 0 if k /∈ J

or

e−2 ∑j∈J λj|zj|2
(
−2λkzk +

∂

∂z̄k
uJ(ζ)

)
= 0 if k ∈ J.

This means ũJ is holomorphic; moreover, we have

|uJ |2φ0 = |ũJ |2φ0,J
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where

φ0,J := −∑
j∈J

λj|zj|2 + ∑
j/∈J

λj|zj|2

and

uJ(0) = ũJ(0).

If we are not in the case that exactly q of λj are negative, we can rewrite

φ0,J :=
n

∑
j=1

λ̃j|zj|2

where at least one of the λ̃j < 0. Then by the assumption |u|2φ0,L2 = 1 and the Fubini-Tonelli’s
theorem, we have ∫

Cn
|ũJ(0, · · · , zj, · · · 0)|2e−λ̃j|zj|2 dv(z) < ∞.

Apply the submean inequality as before, we acquire

ũJ(0) = 0,

i.e.

uJ(0) = 0.

On the other hand, if we have exactly q of λj are negative, we may assume

λ1, · · · , λq < 0.

The argument just used implies

uJ(z) ≡ 0 if J 6= {λ1, · · · , λq}

and

1 = ‖u‖2
2φ0,L2 = ∑

|J=q|

′‖uJ‖2
2φ0,L2 =

∥∥∥u{λ1,··· ,λq}

∥∥∥2

2φ0,L2
=
∥∥∥ũ{λ1,··· ,λq}

∥∥∥2

2φ0,{λ1,··· ,λq},L
2

.

Again, by using submean inequality, there is∣∣∣u{λ1,··· ,λq}(0)
∣∣∣2 =

∣∣∣ũ{λ1,··· ,λq}(0)
∣∣∣2

≤ (π)−n(−λ1) · · · (−λq)(λq+1) · · · (λn)

= (π)−n|λ1| · · · |λn|.

This is exactly the case when q = 0, so we can deduce that

∑
|J|=q

′S(q)
J,Cn(0) = (π)−n|λ1 · · · λn|.

�
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3.5. The local S1-equivariant weak CR Morse inequality. Inspired by the result in the last section,
we can study the the local S1-equivariant weak CR Morse inequality by relating the Szegö kernel
and the extremal function:

Lemma 3.4.

(1) Given any orthonormal basis { fk}dm
k=1 of ker�(q)

b,m, consider

Π(q)
m (x) :=

dm

∑
k=1
| fk(x)|2

then such sum is independent of the choice of the orthonormal basis.
(2) For every orthonormal frame {eJ : |J| = q, J is strictly incrasing} at T∗(0,q)

x X, locally write the
u ∈ Ω(0,q)(X) as u = ∑′|J|=quJeJ , then the extremal function in the direction eJ is defined by

S(q)
m,J(y) :=

{
sup |uJ(y)|2 : u ∈ ker�(q)

b,m, ‖u‖2
L2 :=

∫
X
|u|2dVX = 1

}
And we have the relation

Π(q)
m (x) = ∑

|J|=q

′S(q)
m,J(x) for all x ∈ X.

Proof.

(1) For two orthonormal basis { fi} and {gj} for ker�(q)
b,m, write gj = ai

j fi, then

δij = (gi|gj)

= ak
i āl

j( fk| fl)

= ak
i āl

jδkl

=
dm

∑
k=1

ak
i āk

j .

This is equivalent to
dm

∑
k=1

ai
k āj

k = δij.

Hence ∑dm
k=1 |gk|2 = ∑dm

k=1〈gk|gk〉 = ∑dm
k=1 ai

k āj
k〈 fi| f j〉 = ∑dm

k=1 δij〈 fi| f j〉 = ∑dm
i=1 | fi|2.

(2) First, for any α ∈ ker�(q)
b,m with ‖α‖L2 = 1, then α must be contained in some orthonormal

basis for ker�(q)
b,m, say { fk}dm

k=1. Decompose

Π(q)
m (x) = ∑

|J|=q

′Π(q)
m,J(x) := ∑

|J|=q

′ dm

∑
k=1
| fk,J(x)|2.

Note that |αJ |2 ≤ Π(q)
m,J(x), so Π(q)

m (x) ≥ ∑|J|=q
′S(q)

m,J(x) for all x ∈ X.

Conversely, fix any x0 ∈ X, and let { fk}dm
k=1 be an orthonormal basis for ker�(q)

b,m, then for
any x near X, construct

β(x) :=

(
dm

∑
k=1
| fk,J(x0)|2

)− 1
2 dm

∑
k=1

f̄k,J(x0) fk(x).
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Clearly, we have �(q)
b,mβ = 0, and also

‖β‖2
L2 =

∫
X

1

∑dm
k=1 | fk,J(x0)|2

dm

∑
k,l=1

〈
f̄k,J(x0) fk(x)

∣∣ f̄l,J(x0) fl(x)
〉

dVX(x)

=
∑dm

k=1 | fk,J(x0)|2‖ fk‖2

∑dm
k=1 | fk,J(x0)|2

= 1.

Finally, there is Π(q)
m,J(x0) = ∑dm

k=1 | fk,J |2 = |β J(x0)|2 ≤ S(q)
m,J(x0).

�

We are now ready to derive Theorem 2.1:

(1) Fix any x0 ∈ X, take a canonical patch D = D̃× (−δ, δ) around x0, and the pairing (z, θ, φ)

such that it is trivial at x0.
Now, for any u ∈ ker�(q)

b,m(X), then on D we have

u(z, θ) = ũ(z)eimθ by Tu = imu, T =
∂

∂θ

and
�(q)

2mφvm(z) = 0 by Lemma 3.1, where vm(z) := emφ(z)ũ(z)

If we also assume 1 = ‖u‖L2 :=
∫

X |u|
2dVX, then

1 ≥
∫

D
|u|2dVX

=
∫

D
|vm(z)|2e−2mφ(z)|e2imθ |λ(z)dv(z)dθ

=
∫ δ

−δ
(
∫

D̃
|vm(z)|2e−2mφ(z)λ(z)dv(z))dθ

Consider the scaling ṽm(z) := m−
n
2 emφ

(
z√
m

)
ũ
(

z√
m

)
= m−

n
2 F∗m(emφ(z)ũ(z)), then the above

calculation suggests that

‖ṽm(z)‖2
D̃r ,2mF∗mφ(z) =

∫
D̃r

|ṽm(z)|2F∗m e−2mφ( z
m )λ

(
z√
m

)
dv(z) ≤

∫
D̃
|vm(z)|2e−2mφ(z)λ(z)dv(z) ≤ 1

2δ

for any r such that D̃2r ⊂ D̃log m.
Also, we can find that the scaled Laplacian

�(q)
m ṽm(z) = 0 by �(q)

2mφvm(z) = 0.

These observations motivate us to apply the semi-classical elliptic estimate Proposition 3.2,
so we have

‖ṽm(z)‖D̃r ,2mF∗mφ,Hs+2 ≤ C′s,r,δ.

Here, we may assume C′s,r,δ is independent of x0, since the compactness of X ensures δ can
be picked independent of x0. Apply the results above and the Sobolev’s inequality,

m−n|u(x0)|2 = m−n|ũ(z(x0))|2 = |ṽm(0)|2 ≤ C‖ṽm(z)‖D̃r ,2mF∗mφ,Hs+2 ≤ C′

where C′ is a constant independent of x0 and m.
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So we can conclude that

sup{m−nΠ(q)
m (z) : m ∈N, x ∈ X} < ∞.

(2) On the other hand, by the definition of lim sup, we can find a sequence {umk} inH(q)
b,mk

with
‖umk‖L2 = 1 such that

lim sup
m→∞

m−nS(q)
m,J(x0) = lim

k→∞
m−n

k |umk ,J(x0)|2.

Again, on D we have

umk = ũmk eimkθ

and

�(q)
2mφemkφ(z)ũmk(z) = 0 by Lemma 3.1

Also, let

ṽmk(z) := m−
n
2 emkφ( z√mk

)ũ(
z√
mk

) = mk
− n

2 F∗mk
(emkφ(z)ũ(z)),

‖ṽmk(z)‖2
D̃log mk

,2mF∗mφ(z) ≤
1
2δ

by ‖umk‖L2 = 1

and

�(q)
m ṽmk(z) = 0.

Similar to the case in the first part, we apply the semi-classical elliptic estimate Corollary
3.2:

For mk � 1, every r > 0 such that D̃2r ⊂ D̃log m and s ∈ N, then there exists a constant
cr,s > 0 independent of mk and the point x0 satisfying

‖ṽmk‖2mF∗mk
φ,Hs+2,D̃r

≤ Cs,r

(
‖ṽmk‖2mk F∗mk

φ,L2,D̃2r
+
∥∥∥�(q)

m ṽmk

∥∥∥
2mk F∗mk

φ,Hs,D̃2r

)
.

This leads to

‖ṽmk‖2mF∗mk
φ,Hs+2,D̃r

≤ Cs,r,δ.

Outside D̃log mk , we extend ṽmk by zero. Then by Sobolev’s compact embedding theorem
and diagonal process, we find a subsequence

ṽmkj
→ v := ∑

|J|=q

′vJ(z)dz̄J ∈ Ω(0,q)(Cn)

in C ∞(K) topology for any compact set K ⊂ Cn.
Moreover, the limit process leaves

�(q)
2φ0

v = 0

and ∫
Cn
|v(z)|2e−2φ0(z)dv(z) ≤ 1

2δ
.

So we obtain

|vJ(0)|2 ≤
1
2δ

S(q)
Cn,J(0)
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and

lim sup
m→∞

m−nS(q)
m,J(x0) = lim

j→∞
m−n

k j

∣∣∣∣(umkj
)

J
(x0)

∣∣∣∣2
= lim

j→∞

∣∣∣∣(ṽmkj
)

J
(0)
∣∣∣∣2

= |vJ(0)|2

≤ 1
2δ

S(q)
Cn,J(0).

Finally, combine the above calculation, Theorem 3.4 and Theorem 3.4

lim sup
m→∞

m−nΠ(q)
m (x0) = lim sup

m→∞
m−n ∑

|J|=q

′S(q)
m,J(x0)

≤ ∑
|J|=q

′ lim sup
m→∞

m−nS(q)
m,J(x0)

≤ 1
2δ

S(q)
Cn,J(0)

=
1
2δ

1
2πn |λ1 · · · λn|1X(q)(x0).

With the third part in Theorem 3.1, we can choose δ = π
k − ε when x0 ∈ Xk, so we can

deduce for all k ∈N, x0 ∈ Xk 6= ∅, then for all q = 0, 1, · · · , n

lim sup
m→∞

m−nΠ(q)
m (x0) ≤

kn

2πn+1 |detLx|1X(q)(x0).

4. ASYMPTOTIC BOUNDS FOR THE DIMENSION OF TORUS EQUIVARIANT CR SECTIONS

4.1. Basic settings and the operator−iT0. We start with some basic terminology, and illustrate the
idea of Hendrick–Hsiao–Li [8] , where they use the transversality condition to reduce our problem
to the case for R-action

Let Td y X be a CR manifold of dimR X = 2n + 1, n ≥ 1 with a torus action. We denote the
group action as

(eiθ1 , · · · , eiθd) : Td × X → X by
(
(eiθ1 , · · · , eiθd), x

)
7→ (eiθ1 , · · · , eiθd) ◦ x.

Consider the fundamental vector fields in each directions of Td by

Tju(x) :=
∂

∂θj

∣∣∣∣
θj=0

u
(
(1, · · · , eiθj , · · · , 1) ◦ x

)
, for all j = 1, · · · , d, x ∈ X.

We say that the group action is

(1) CR, if [Tj, C∞(X, T1,0X)] ⊂ C∞(X, T1,0X) for each j = 1, · · · , d.
(2) transversal, if there exists a pair (µ1, · · · , µd) ∈ Rd \ (0, · · · 0) such that

T1,0
x X

⊕
T0,1

x X
⊕

C(
d

∑
j=1

µjTj)(x) = CTxX

for all x ∈ X.

From now on, we assume the condition for CR and transversality, and this leads to
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Proposition 4.1. Tj∂̄b = ∂̄bTj for all j = 1, , , d.

Proof. Since the transversal properties is an open condition, by the continuity we have

T1,0X⊕ T0,1X⊕C〈µj,1T1 + · · ·+ µj,dTd〉 = CTX

where

[
µj,k

]
1≤j,k≤d

=


µ1 µ2 µ3 . . . µd

µ1 µ2 + ε µ3 + ε . . . µd + ε

µ1 µ2 µ3 + ε . . . µd + ε
...

...
...

. . .
...

µ1 µ2 µ3 . . . µd + ε


is an invertible matrix. Consider the vector fields

T0,j :=
d

∑
k=1

µj,kTk,

which induce CR, transversal group actions. So similar to the case in Hsiao–Li [9], after selecting
the canonical patch from Baouendi–Rothschild–Trèves [1], we have

T0,j∂̄b = ∂̄bT0,j for each j = 1, · · · d.

In ohter words, [
µj,k

]
1≤j,k≤d


T1∂̄b − ∂̄bT1

...
Td∂̄b − ∂̄bTd

 = 0,

and hence Tj commutes with ∂̄b. �

This observation suggests a subcomplex of the ∂̄b-complex by taking

Ω(0,q)
p1,··· ,pd(X) := {u ∈ Ω(0,q)(X) : Tju = ipju for all j = 1, · · · , d},

and the restriction
∂̄b : · · · → Ω(0,q)

p1,··· ,pd(X)→ Ω(0,q+1)
p1,··· ,pd(X)→ · · ·

We also have the torus equivariant cohomology

Hq
b,p1,··· ,pd

(X) :=
ker ∂̄b

im∂̄b
.

In this section, we aim to establish the Hodge theorem for Hq
b,p1,··· ,pd

(X). The starting point is to
translate our problem of torus equivariant to the case of R equivariant, via the following series of
observations: First, as indicated in Hendrick–Hsiao–Li [8], there is

Lemma 4.1. We may assume (µ1, · · · , µd) ∈ Rd are linearly independent of Q such that the R-action
induced by T0 := ∑d

j=1 µjTj is still CR and transversal.

Proof. Suppose µ1, · · · , µd are linear dependent over Q, without loss of generality, we may assume
µ1, · · · , µk are linear independent over Q, where 1 ≤ k < d. Write

µl :=
k

∑
j=1

rj,lµj, l = k + 1, · · · , d, rjl ∈ Q.



36 SHEN, WEI-CHUAN

Consider a new torus action on X defined by

x 7→ (eiθ1 , · · · , eiθk) · x := (eiNθ1 , · · · , eiNθk , eiN ∑k
j=1 rj,k+1θj , · · · eiN ∑k

j=1 rj,dθj) ◦ x,

where N ∈ N is the least integer such that rj,l
∣∣N for all j = 1, · · · k, l = k + 1 · · · d. Take the vector

fields Tj on C ∞(X) by

Tj :=
∂

∂θj

∣∣∣∣
θj=0

u
(
(1, · · · , eiθj , · · · , 1) · x

)
, for all u ∈ C ∞(X)

for all j = 1, · · · , k, then it is clear that

T0 :=
d

∑
j=1

µjTj =
k

∑
j=1

µj

N
Tj,

where µ1
N , · · · , µk

N are real numbers linear independent over Q. Also, by construction of T0, we have[
T0, C ∞(X, T1,0X)

]
⊂ C ∞(X, T1,0X),

and
T0(x)⊕ T1,0

x X⊕ T0,1
x X = CTxX for all x ∈ X,

i.e. the induced R-action is also CR and transversal. �

Second, we wish to understand the spectral of −iT0. Consider a T0-rigid L2 inner product (·|·)
induced by the CR, transversal of the R-action, then we have:

Proposition 4.2. The operator −iT0 : Ω(0,q)(X)→ Ω(0,q)(X) has a self adjoint bounded extension

−iT0 : Dom (−iT0) ⊂ L2
(0,q)(X)→ L2

(0,q)(X)

where the domain is defined by Dom (−iT0) := {u ∈ L2
(0,q)(X) : −iT0u ∈ L2

(0,q)(X)}.

Proof. As in the case for Hsiao–Li [9], since T0 is transversal, locally we have T0 = ∂
∂η locally;

moreover, if we fix the T0-rigid inner product (·|·), which induces the volume form with local
expression

dVX(x) = 2nλ(x1, · · · , x2n)dx1 · · · dx2ndη for a real-valued smooth function λ

then for u, v ∈ Ω(0,q)(X), on the canonical patch D ⊂ X, we have

(−iT0u|v) =
∫

D
(−i

∂

∂η
u)v̄2nλ(x1, · · · , x2n)dx1 · · · dx2ndη

=
∫

D
u
(
−i

∂

∂η
v̄2nλ(x1, · · · , x2n)

)
dx1 · · · dx2ndη

=
∫

D
u−i

∂

∂η
v2nλ(x1, · · · , x2n)dx1 · · · dx2ndη

= (u| − iT0v).

Apply the Friedrich’s lemma for the first order differential operator−iT0, we can extend the above
equation to the case of u, v ∈ L2

(0,q)(X), by considering {uj}, {vj} ∈ Ω(0,q)(X) such that

uj → u, vj → v ,−iT0uj → −iT0u, −iT0vj → −iT0v in L2
(0,q)(X).
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Then
(−iT0u|v) = lim

j→∞
(−iT0uj|vj) = lim

j→∞
(uj| − iT0vj) = (u| − iT0v).

So we get the symmetry condition for −iT0.
Next, on one hand, recall that

Dom (−iT0)
∗ := {v ∈ L2

(0,q)(X) : ∃ c > 0 s.t.
∣∣(−iT0u|v)

∣∣ < c‖u‖ for all u ∈ Dom − iT0}

where ‖u‖2
L2 := (u|u).

So by Riesz’s lemma, for all v ∈ Dom (−iT0)∗, there exists w ∈ L2
(0,q)(X) such that

(−iT0u|v) = (u|w) for all u ∈ Dom (−iT0)

Since this also holds for all u ∈ Ω(0,q)(X), along with the observation that −iT0 is symmetric, it
implies −iT0v = w ∈ L2

(0,q)(X), i.e. Dom (−iT0) ⊂ Dom (−iT0)∗.
On the other hand, by Cauchy-Schwartz inequality and the symmetry again, we can also find

Dom (−iT0) ⊂ Dom (−iT0)∗.
In conclusion, −iT0 = (−iT0)∗. �

Proposition 4.3. Fix a (p1, · · · , pd) ∈ Zd, let pβ := ∑d
j=1 µj pj, where {µj}d

j=1 is chosen in Lemma 4.1,
then the L2 eigenspace of −iT0 is

L2
(0,q),pβ

(X) := {u ∈ Dom (−iT0) : −iT0u = pβu} = L2
(0,q),p1,··· ,pd

(X) 6= {0}.

Proof. First, we show that for any fixed (p1, · · · , pd) ∈ Zd, L2
(0,q),p1,··· ,pd

(X) 6= {0}. The idea is to

use rational approximation to reduce to the case for circle action. Choose (γ1, · · · , γd) ∈ Qd closed
enough to (µ1, · · · , µd) ∈ Rd, and consider the vector field T̂0 := ∑d

j=1 γjTj, which induces a CR,
transversal S1-action, and after some proper scaling, we may assume it has period of 2π. Denote
such S1-action of period 2π by S1 × X 3 (eiθ , x) 7→ eiθ · x ∈ X (we use the notation · to distinguish
the one for group action ◦ appeared earlier), let

Xreg := {x ∈ X : eiθ · x 6= x for all θ ∈ [0, 2π)}.

Note that the regular set is non-empty. For pγ := ∑d
j=1 γj pj, there is

L2
(0,q),p1,··· ,pd

(X) ⊃ Ω(0,q)
p1,··· ,pd X = Ω̂(0,q)

pγ
X := {u ∈ Ω(0,q)(X) : T̂0u = ipγu}.

So for x := (x′, x2n+1) ∈ Xreg, apply the Theorem 3.1, locally on the canonical patch D, we have

eiθ · (x′, x2n+1) /∈ D for all θ ∈ (ε, 2π − ε)

and

T0 =
∂

∂x2n+1
on D.

Hence, consider χ(x) ∈ C ∞
0 (D) such that

∫
X χ(x′, x2n+1)dx2n+1 6= 0, and for |J| = q, take

uJ(x) := χ(x)eipγx2n+1 ∈ C ∞
0 X,

then

Ω̂(0,q)
pγ

X 3 1
2π

∫ 2π

0
u(eiθ · x)e−ipγθdθ =

∫
X

χxdx2n+1 6= 0,

so this part is done.



38 SHEN, WEI-CHUAN

Second, for a fixed p ∈ Zd, by the definition of pβ, the direct computation gives L2
(0,q),p1,··· ,pd

(X) ⊂
Epβ

. Conversely, suppose L2
(0,q),p1,··· ,pd

(X) ( Epβ
, then there exists a u ∈ Epβ

, ‖u‖ = 1, u ⊥
L2
(0,q),p1,··· ,pd

(X).

Note that −iT0(Q
q
m1,··· ,md u) = (∑d

j−1 µjmj)Q
q
m1,··· ,md u for all m ∈ Zd, and by the assumption that

{µj}d
j=1 are linear independent over Q, we have

pβ :=
d

∑
j=1

µj pj =
d

∑
j=1

µjmj ⇔ m = p.

This implies

(u|Q(q)
m1,··· ,md u) =

0 : if m = p by the perpendicular assumption

0 : if m 6= p because the intersection of two eigenspaces is null
.

In conclusion, for N ∈N,

‖u− ∑
m∈Zd,|m|≤N

Q(q)
m1,··· ,md u‖2

L2 = ‖u‖2
L2 + ∑

m∈Zd,|m|≤N

‖Q(q)
m1,··· ,md u‖2

L2 ≥ 1.

However, the L.H.S tends to zero by the theory of Fourier series, this makes a contradiction. �

Theorem 4.1.

(1) λ ∈ Spec (−iT0)⇔ λ is an L2 eigenvalue of the form λ = ∑d
j=1 µj pj in Proposition 4.3.

(2) Hq
b,p1,··· ,Pd

(X) ∼= ker�(q)
b,p1,··· ,pd

:= {u ∈ Dom �(q)
b,p1,··· ,pd

: �(q)
b u = 0} is a finite dimensional

subspace of Ω(0,q)
p1,··· ,pd(X).

Proof.

(1) We here use some general spectral theory of self-adjoint operators (cf. Davies, E. B. [5,
Chapter 2]). Since −iT0 : Dom (−iT0) ⊂ L2

(0,q)(X) → L2
(0,q)(X) is a self adjoint operator,

then S := Spec F ⊂ R and there exists a positive finite measure dµ on S×N such that

L2
(0,q)(X) ∼=

{
h(s, n) : S×N→ R

∣∣ ∫ |h|2dµ ≤ ∞
}

.

Under this isomorphism, we realize −iT0 as

−iT0 : h(s, n) ∈ Dom (−iT0) 7→ sh(s, n) ∈ L2(S×N, dµ)

where

Dom (−iT0) ∼=
{

h(s, n) ∈ L2(S×N, dµ)
∣∣ ∫ |sh(s, n)|2 < ∞

}
.

Now consider A := {∑d
j=1 µj pj : (p1, · · · , pd) ∈ Zd} and a Borel set B ⊂ R such that

B ∩ A =Ø. Take the spectral projection of B, which can be seen as

E(B) : h(s, n) 7→ 1B(s)h(s, n).

Then note that for g ∈ Rang E(B), by Qq
(m1,··· ,md)

g ⊂ Rang E(A) ∩ Rang E(B) = {0}, there
is

∀(m1, · · · , md) ∈ Zd, (g|Qq
m1,··· ,md g) = 0.
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Finally, along with the approximation by Fourier series, we have

‖g‖2
L2 + ‖Qq

m1,··· ,md g‖2
L2 = ‖g−Qq

m1,··· ,md g‖2
L2 → 0.

So g = 0.
(2) Since �(q)

b − T2
0 is a self adjoint elliptic operators, we can repeat the proof of Theorem 3.2.

�

4.2. The method of rational approximation. With the study of the operator −iT0 previously, we
are now ready to approximate the R-action induced by T0 by some sequence of S1-action, and get
the asymptotic bounds for torus equivariant CR sections.

For a fixed (p1, · · · , pd) ∈ Zd, consider the corresponding α := ∑d
j=1 µj pj ∈ Spec (−iT0). Then

for each j = 1, , , .d, consider a sequence {µk,j}∞
k=1 such that µk,j ∈ Q converges to µj, let T̂k :=

∑d
j=1 µk,jTj → T0 and αk := ∑d

j=1 µk,j pj → α as k → ∞. For all m ∈ N, put the space of tours
equivaraint CR sections

H0
b,mα(X) := {u ∈ ker�(0)

b : −iT0u = mαu}

and
H

q
b,mαk

(X) := {u ∈ ker�(0)
b : −iT̂ku = mαku}.

Note that for all m ∈N, we already have

Hq
b,mα(X) ⊂H

q
b,mαk

(X).

However, the other inclusion may not happen , because the issue

(4.1)
d

∑
j=1

µk,j p̂j =
d

∑
j=1

µk,j pj for another p̂ 6= p

occurs. Accordingly, it’s crucial to specify what kinds of lattice point (p1, · · · , pd) makes

dimCH
q
b,mα(X) = dimC H

q
b,mαk

(X),

which answer the question when does dimCH
q
b,mα(X) = O(mn).

We now illustrate how we locate such lattice point: For a fixed (p1, · · · , pd) ∈ Zd, suppose
µj pj > 0 for all j = 1, · · · , d, and consider the case

H0
b,p1,··· ,pd

(X) = ker�(0)
b,α := {u ∈ ker�(0)

b : −iT0u = αu} 6= {0},

where α := ∑d
j=1 µj pj. Then ∀m ∈N, m ≥ 2, we also have mµj pj > 0 for all j, and

ker�(0)
b,mα := {u ∈ ker�(0)

b : −iT0u = mαu} 6= {0}.

Hence, ∀m ∈ N, one one hand we have mα > 0. On the other hand, m2α2 ∈ Spec (�(q)
b − T2

0 ),

which is a discrete subset of R+ by the ellipticity and positivity of �(q)
b − T2

0 . So for each m ∈ N,
there exists a constant Cm > 0 such that

inf{|m2α2 − β| : β ∈ Spec (�(0)
b − T2

0 )} = Cm > 0.

However, this is not enough to guarantee the method of rational approximation works. In fact,
under a certain spectral gap assumption, we have the following key lemma:
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Lemma 4.2. For a fixed (p1, · · · , pd) ∈ Zd of H0
b,p1,··· ,pd

(X) 6= {0}, assume

µj pj > 0 for all j = 1, .., d

and there exists a constant c > 0 such that

inf
{
|m2α2 − β2| : β ∈ Spec (−iT0), β 6= mα, ker�(0)

b,β 6= {0}, m ∈N
}
= C > 0.

Then for all m ∈ N, there exists a large k0 ∈ N independent of m such that for all k ≥ k0, the orthogonal
projection

u ∈ {u ∈ ker�(0)
b : T̂ku = imαku} 7→ Q(0)

mαu ∈ {u ∈ ker�(0)
b : T0u = imαu}

with respect to the T0 invariant L2 inner product (·|·) is bijective.

Proof. The surjectivity holds because it is a projection map. For the injectivity, suppose otherwise,
then for each k ∈N,

∃ uk ∈ ker�(0)
b such that T̂kuk = imαku and ‖uk‖2

L2 = 1 with Q(0)
mαuk = 0.

Since T0 is self adjoint, uk ∈ ker�(0)
b ⊂ Ω(0,q)(X) and Q(0)

α uk = 0, we can take the orthogonal
decomposition

uk =
∞

∑
l=1

uk,l in C∞ topology, with ‖uk‖2
L2 =

∞

∑
l=1
‖uk,l‖2

L2 .

Here, T0uk,l = iβk,luk,l , βk,l 6= mα for all l. Note that by �(0)
b T0 = T0�

(0)
b , we have uk,l ∈ ker�(0)

b ,
so β2

k,l ∈ Spec (�0
b − T2

0 ). For simplicity, we let βk,1 := −mα. Now, we use the estimate on Sobolev
norm of uk to reach a contradiction. First, since T̂k → T0, there exists εk → 0 such that

εk‖uk‖2
H1 = ‖(T0 − T̂k)uk‖2

L2

=
∞

∑
l=1
|βk,l −mαk|2‖uk,l‖2

L2

≥ |βk,1 −mαk|2‖uk,1‖2
L2

> m2α2‖uk,1‖2
L2 when k� 1 makes αk > 0.

By the a Gårding’s inequality for the second order strongly elliptic operator �(q)
b − T2

0 , along with
the use of T̂k → T0 again, there is a constant C1 such that

‖uk‖2
H1 ≤ C1

(
Re
(
(�(q)

b − T2
0 )uk

∣∣∣uk

)
+ ‖uk‖2

L2

)
= C1

(
‖T0uk‖2

L2 + ‖uk‖2
L2

)
= C1

(
‖(T0 − T̂k + T̂k)uk‖2

L2 + ‖uk‖2
L2

)
≤ C1

(
εk‖uk‖2

H2 + ‖T̂kuk‖2
L2 + ‖uk‖2

L2

)
≤ C1εk‖uk‖2

H1 + C1(m2α2
k + 1).
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Second, since we also have T̂2
k → T2

0 , there exists ε̃k → 0 such that

ε̃k‖uk‖2
H2 = ‖(T2

0 − T̂2
k )uk‖2

L2

= ‖
∞

∑
l=1

(m2α2
k − β2

k,l)uk,l‖2
L2

≥
∞

∑
l=2

∣∣(m2α2
k −m2α2)− (β2

k,l −m2α2)
∣∣2 ‖uk,l‖2

L2

≥
∞

∑
l=2

∣∣|β2
k,l −m2α2| − |m2α2

k −m2α2|
∣∣2 ‖ul

k‖2
L2

> (2m2 − 1)2C2 ∑
l≥2
‖uk‖2

L2 when k� 1 makes |α2
k − α2| < 2C.

By the a priori estimate for the second order elliptic operator �(q)
b − T2

0 , along with the use of
T̂2

k → T2
0 again, there is a constant C2 such that

‖uk‖2
H2 ≤ C2

(∥∥∥(�(q)
b − T2

0 )uk

∥∥∥2

L2
+ ‖uk‖2

L2

)
= C2

(
‖T2

0 uk‖2
L2 + ‖uk‖2

L2

)
= C2

(
‖(T2

0 − T̂2
k + T̂2

k )uk‖2
L2 + ‖uk‖2

L2

)
≤ C2

(
ε̃k‖uk‖2

H2 + ‖T̂2
k uk‖2

L2 + ‖uk‖2
L2

)
≤ C2ε̃k‖uk‖2

H2 + C2(m4α4
k + 1)

Hence, if we denote k0 � 1 to be the number such that all the above estimate holds, then

1 = ‖uk0‖
2
L2

= ‖uk0,1‖2
L2 + ∑

l≥2
‖uk0,l‖2

L2

≤ εk0

m2α2 ‖uk0‖
2
H1 +

ε̃k0

m4C2 ‖uk0‖
2
H2

≤ εk0

m2α2

C2(m2α2
k0
+ 1)

1− C1εk0

+
ε̃k0

(2m2 − 1)2C2

C2(m4α4
k0
+ 1)

1− C2ε̃k0

≤ εk0

α2

C2(α2
k0
+ 1)

1− C1εk0

+
ε̃k0

C2

C2(α4
k0
+ 1)

1− C2ε̃k0

� 1 if we take k0 larger.

and this leads to a contradiction. �

Under the same condition of the lemma, since H
q

b,mαk
(X) has finite dimension for all m ∈N, by

rank-nullity theorem we can conclude that:

Theorem 4.2. For a fixed (p1, · · · , pd) ∈ Zd of H0
b,p1,··· ,pd

(X) 6= {0}, assume

µj pj > 0 for all j = 1, .., d

and suppose that there exists a constant c > 0 such that

inf
{
|m2α2 − β2| : β ∈ Spec (−iT0), β 6= mα, ker�(0)

b,β 6= {0}, m ∈N
}
= C > 0.
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Then for all m ∈N, there exists a large k0 ∈N independent of m such that for all k ≥ k0

dimCH0
b,mα(X) = dimC H 0

b,mαk
(X).

4.3. The torus equivariant CR Siu–Demailly–Grauert–Riemenschneider criterion. Fix a lattice
point (p1, · · · , pd) ∈ Zd and the k0 as in Theorem 4.2. Then for all m ∈N, first we apply Theorem
2.3 to the S1-equivaraint tangential Cauchy–Riemann complex

(
Ω(0,•)

mαk0
(X), ∂̂b,mαk0

)
induced by T̂k0

(note that the period of this circle action may not be 2π), that is

(4.2)
n

∑
j=0

(−1)j dimC Ĥ
j

b,mαk0
(X) =

1
2π

∫
X

Tdb(T1,0X) ∧ exp(−mαk0 dω̂0

2π
) ∧ ω̂0.

(Here ω̂0 is the canonical one form dual to T̂k0 ; Tdb(T1,0)X is the T0-rigid, and hence the Tk0-rigid
tangential Todd class on X; Ĥ

j
b,mαk0

(X) := {u ∈ ker �̂(j)
b : −iT̂k0 u = mαk0 u}, where �̂(j)

b is the Kohn

Laplacian determined by T̂k0). Second, by Theorem 2.2, we also have

(4.3) dimC Ĥ
j

b,mαk0
(X) ≤ (mαk0)

n

2πn+1

∫
X̂(j)
|det L̂x|dVX(x) + o(mn).

(Here, L̂x is the Levi form induced by Tk0 , and recall that the index set X̂(q) := {x ∈ X :
L̂x is nondegenerate and has exactly q negative eigenvalues}). Third, since the CR structure T1,0X
is fixed, we have

ker�(0)
b = ker ∂̄b = ker ˆ̄∂b = ker �̂(0)

b

so

(4.4) H0
b,mα(X) = H 0

b,mαk0
(X) = Ĥ 0

b,mαk0
(X).

In conclusion, when X is a torus invariantly weakly pseudoconvex and torus invariantly pseu-
doconvex at a point; in other words, the Siu’s type condition that Lx ≥ 0 for all x ∈ X and Lp > 0
for some p ∈ X holds. Then,

(4.5) dimCH0
b,mα(X) = dimC H 0

b,mαk0
(X) = dimC Ĥ 0

b,mαk0
(X) = O(mn).

We reason (4.5) as follows: By construction,

T0 = γ(x)T̂k0 mod T1,0X⊕ T0,1X

for some γ(x) > 0, and

ω0(x) =
1

γ(x)
ω̂0(x) mod T∗1,0X⊕ T∗0,1X.

The Cartan’s formula gives

Lij(x) =
〈
ω0(x), [Zj, Zk]

〉
=

〈
1

γ(x)
ω̂0(x), [Zj, Zk]

〉
=

1
γ(x)

L̂ij(x)

where {Zj}n
j=1 is a basis of T1,0

x X. This leads to L̂x ≥ 0 for all x ∈ X and L̂p > 0 for some p ∈ X,
hence on one hand

X̂(0) is containted in a ball, X̂(q) = ∅ for all q ≥ 1

or equivalently
dimC Ĥ

j
b,mαk0

(X) = o(mn) for all j ≥ 1 by Theorem 2.2.
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On the other hand, since α > 0 by our assumption, we also have

n

∑
j=1

(−1)j dimC Ĥ
j

b,mαk0
(X) = O(mn) by Theorem 2.3.

We summarize the above discussion as our main theorem:

Theorem 4.3 (The torus equivariant CR Siu–Demailly–Grauert–Riemenschneider criterion). Let
X be a CR manifold endowed with a transversal, CR torus action on X. Assume X is torus invariantly
pseudoconvex and torus invariantly strongly pseudoconvex at a point. For a fixed (p1, · · · , pd) ∈ Zd such
that H0

b,p1,··· ,pd
(X) 6= {0}, assume

µj pj > 0 for all j = 1, · · · , d

and suppose that there exists a constant C > 0 such that

inf
{
|m2α2 − β2| : β ∈ Spec (−iT0), β 6= mα, ker�(0)

b,β 6= {0}, m ∈N
}
= C > 0.

(where α := ∑d
j=1 µj pj, {λj}d

j=1 are the transversal data linearly independent over Q) then

dimC H0
b,mp1,··· ,mpd

(X) = dimC H0
mα(X) = O(mn)

We end this section by the torus equivariant Siu–Demailly–Grauert–Riemenschneider criterion
on complex manifolds. Let M be a compact complex manifold of dimC M = n with a holomor-
phic torus action, and (L, hL) be a holomorphic line bundle over M with a torus invariant smooth
hermitian metric. Since the torus action is holomorphic and L is also h, we have ∂̄Tj = Tj∂̄ for all
j = 1, · · · d, where Tj are the fundamental vector fields in j-th direction induced by the torus action.
So we can take the space of torus equivariant holomorphic section for (p1, · · · , pd) ∈ Zd by

H0
p1,··· ,pd

(M, L) := {u ∈ C ∞(M, L) : ∂̄u = 0, −iTju = pju}.

Consider the circle bundle X := {v ∈ L∗ : |v|2hL∗ = 1}, which is a CR manifold endowed with a
natural CR, transversal S1-action on its fiber. We can check that:

(1) The induced tours action

Td × S1 = Td+1 y X

also satisfies the CR, transversal properties. In fact, for a fixed (p1, · · · , pd) ∈ Zd, the
transversal data (µ1, · · · , µd+1) ∈ Rd+1 can be choose to be any pair of real numbers of
the form (µ1, · · · , µd, 1). As for the CR condition, since the projection πX : X → M is a
submersion, for all j we can lift Tj to X, and denote them as T̃j. Combine the πX-relatedness
of Tj and T̃j, [∂̄b, Tj] = 0 and the assumption that hL is tours invariant, we get T̃j∂̄b = ∂̄T̃j.
(Here, one way to understand the assumption that hL is tours invariant is by taking the local
picture. In the canonical patch of Theorem 3.1 with respect to T0, we say hL is tours invariant
if Tjφ = 0 for all j = 1, · · · d. In this patch we can also write ∂̄b = ∑n

j=1

(
∂

∂z̄j
− i ∂φ(z)

∂z̄j

∂
∂θ

)
.

Because Tj are induced by a holomorphic action and T̃j is πX-related to Tj, we can find
[T̃j, ∂

∂z̄j
] = 0, i.e. [∂̄b, T̃j] = 0 for all j).
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(2) X preserves the positivity of L by RL
z = 1

2Lx, where x := (z, η). In fact, let U be any local
trivialization of L, and s : U → L be the local trivializing section. Take φ : U → R such
that |s(z)|2hL = e−2φ(z) for some real-valued smooth function φ, then the canonical curvature

is a real positive (1, 1) form locally defined by RL := 2∂∂̄φ = 2 ∑n
j,k=1

∂2φ
∂zj∂z̄k

dzj ∧ dz̄k. (Note

that for another local trivializing section s̃ = gs, where g 6= 0 is holomorphic, then |s̃|2hL =

e−2φ̃ = |g|2|s|2hL = e−2φ+2 log |g| namely φ̃ = φ − log |g|, where log |g| is harmonic. So
∂∂̄φ = ∂∂̄φ̃). Now, for (z, η) in a canonical patch of X, there is a real-valued smooth function
φ(z) as in Theorem (3.1) such that

Lx :=
−1
2i

ω0(z, η)

=
−1
2i

d

(
dη − i

n

∑
j=1

(
∂φ

∂zj
dzj −

∂φ

∂z̄j
dz̄j)

)

=
n

∑
j,k=1

∂2φ

∂zj∂z̄k
dzj ∧ dz̄k

=
1
2

RL
z .

(3) ∀m ∈ N, H0
p1,··· ,pd

(M, Lm) ∼= H0
p1,··· ,pd,m(X). This can be check as in Cheng–Hsiao–Tsai [4]:

with the same local picture in the last part, let

A(q)
mp1,··· ,mpd : Ω0,q

mp1,···mpd,m(X)→ Ω0,q
mp1,···mpd,m(M, Lm)

by

u(z, α) = eimθ → sm(z)emφ(z)ũ(z),

where ũ(z) ∈ Ω0,q
mp1,··· ,mpd(U). After some straight forward computation, we can find that

A(q)
mp1,··· ,mpd,m is well-defined and bijective. Also, we can verify

A(q)
mp1,···mpd,m∂̄ = ∂̄b A(q+1)

mp1,···mpd,m.

So the isomorphism follows.

Combine all the above facts, we can hence conclude a Siu’s type criterion for the bigness of line
bundle L in the sense of torus equivariance by using Theorem 4.3:

Corollary 4.1 (The torus equivariant Siu–Demailly–Grauert–Riemenschneider criterion). Let M be a
compact complex manifold of dimC M = n with a holomorphic torus action Td, and (L, hL) be a holomorphic
line bundle over M with a torus invariant smooth hermitian metric. Take any real numbers {µj}d

j=1 linearly
independent over Q. If the canonical curvature RL induced by hL satisfies RL ≥ 0 and RL

z > 0 for some
z ∈ M, and suppose that for the given lattice point (p1, · · · , pd) ∈ Zd satisfies

µj pj > 0 for all j = 1, · · · , d,

and a spectral gap such that for all m ∈N, and all ( p̂1, · · · , p̂d+1) 6= (mp1, · · · , mpd, m) with

ker �(0)
p̂d+1

∣∣∣
C ∞

p̂1,··· ,p̂d
(M,L p̂d+1 )

6= {0},
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there is

inf

∣∣∣∣∣∣m2

(
(

d

∑
j=1

µj pj)
2 + 1

)
−
(

d+1

∑
j=1

µj p̂j

)2
∣∣∣∣∣∣ > 0.

Then for such (p1, · · · , pd) ∈ Zd, L is torus equivariantly big, that is

dimC H0
mp1,··· ,mpd

(M, Lm) = O(mn).
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folds, arXiv:1710.04910v2 (2017).

[9] Chin-Yu Hsiao and Xiaoshan Li, Morse inequalities for Fourier components of Kohn–Rossi cohomology of CR manifolds
with S1–action (English summary), Mathematische Zeitschrift 284 (2016), no. 1-2, 441–468.

[10] Xiaonan Ma and George Marinescu, Holomorphic Morse inequalities and Bergman kernels, Progress in Mathematics,
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